List of PG & Ph.D Theses titles submitted till 30th May, 2022

DIRECTORATE OF INSTRUCTION CENTRAL AGRICULTURAL UNIVERSITY LAMPHELPAT, IMPHAL 795 004, MANIPUR

CONTENTS

Sl. No.	NAME OF COLLEGE	PAGE
		NO.
1.	Number of PG &Ph.D theses submitted by constituent colleges	2
	conleges	
2.	College of Veterinary Sciences & Animal Husbandry,	3 - 63
	Aizawl, Mizoram	
3.	College of Agricultural Engineering & Post Harvest	64- 76
	Technology, Ranipool, Gangtok, Sikkim	
4.	College of Fisheries, Lembucherra, Tripura	77 - 101
5.	College of Horticulture & Forestry, Pasighat,	102-114
	Arunachal Pradesh	
6.	College of Community Sciences, Tura, Meghalaya	115-116
7.	College of Agriculture, Imphal, Manipur	117 -178
8.	College of Post Graduate Studies in Agricultural	179 - 277
	Sciences, Umiam, Meghalaya	

NUMBER OF PG & PH.D. THESES SUBMITTED BY CONSTITUENT COLLEGES (Till 30th MAY 2022)

Sl. No.		M.Sc.	Ph.D.	Total
1.	College of Veterinary Sciences & Animal	273	11	284
	Husbandry, Aizawl, Mizoram			
2.	College of Agricultural Engineering & Post	28	2	30
	Harvest Technology, Ranipool, Gangtok, Sikkim			
3.	College of Fisheries, Lembucherra, Tripura	177	3	180
4.	College of Community Sciences, Tura,	6	-	6
	Meghalaya			
5.	College of Horticulture & Forestry, Pasighat,	88	13	101
	Arunachal Pradesh			
6.	College of Agriculture, Imphal, Manipur	534	15	549
7.	College of Post Graduate Studies in	380	50	430
	Agricultural Sciences, Umiam, Meghalaya			
	Total	1486	94	1580

1. COLLEGE OF VETERINARY SCIENCES & ANIMAL HUSBANDRY, AIZAWL, MIZORAM

A. THESIS DETAILS (M.V.Sc.)

1. DEPARTMENT OF VETERINARY PARASITOLOGY

			M.V	.Sc	
Sl.	Title of the thesis	Name of the	Major	Year of	Outcome
no.		student	subject	completion	
1.	Surveillance of parasitic fauna and parasitic diseases of pigs in Mizoram	Dr. Freddy H. Siamthara	Veterinary Parasito-logy	2017	 A cross-sectional study was conducted between June 2015 to June 2016, to determine the prevalence of helminths, ectoparasites and haemoparasites in pigs of different age groups in Mizoram. Out of 600 samples examined, five hundred and sixteen pigs (86%) were found to harbour at least one or more parasites. Different spectrum of parasites encountered were Ascaris suum (9.5%), Strongyloides ransomi (5.3%), Trichuris suis (2.8%), Oesophagostomum sp. (7.1%) and Hyostrongylus rubidus (2.1%) including four (4) species of protozoa namely- Eimeria sp. (12.8%), Isospora suis (7.8%), Balantidium coli (38.5%) and Cryptosporidium sp., respectively. Out of 114 skin scrap samples of pig suspected for mite infestation, 20 (17.5%) were positive for Sarcoptes scabiei var. suis and 5 (4.3%) for Demodex sp.
2.	Parasitic fauna and diseases in Manipuri ponies with special reference to cutaneous Habronemiosis	Dr. Chirom Nishita Devi	Veterinary Parasito-logy	2017	• The study found that 82.5% of Manipuri ponies are infected with endoparasite and 6.0% with ectoparasite. The predominant parasite found after coprological examination are strongyle (54.55%), Stongyloides (30.31%), Parascaris equarum (23.03%), Oxyuris equi (20.61%), Habronema sp (8.49%), Dictyocaulus arnfieldi (3.09%), amphistome (2.43%), Eimeria (18.19%).

					 Cutaneous habronemiosis is also reported and genetically characterized for the first time in India.
3.	Studies on ticks and tick-borne haemoprotozoa of cattle in Aizawl and Kolasib districts of Mizoram	Dr. Subhamoy Ghosh	Veterinary Parasito-logy	2018	 The overall prevalence of tick infestation recorded was 62.27%. Molecular detection of haemoprotozoa was done by PCR and found positive for <i>Babesia bigemina</i> (0.78%), <i>Theileria orientalis</i> (22.13%), <i>Theileria annulate</i> (15.62%), <i>Anaplasma marginale</i> (25.78%), <i>Anaplasma centrale</i> (18.22%) and <i>Anaplasma bovis</i> (17.44%)
4.	Identification of tick(s) infesting cattle in Mizoram and exploration of acaricide resistance	Dr. K. Lalawmpuii	Veterinary Parasitology	2022	 Two species of ticks viz. Rhipicephalus microplus and Haemaphysalis bispinosa was found infecting cattle of Mizoram and Amblyomma habreum in Mithun by morphological and DNA sequence and further characterized using ribosomal and mitochondrial DNA. The role of these ticks in the transmission of vector-borne haemoparasites was also studied and found that 5% each of the tick carry Theileria orientalis and Anaplasma marginale. 97% of the tick specimen examined carry Coxiella-like organism as endosymbiont.

2. DEPARTMENT OF VETERINARY PATHOLOGY

Sl.	Name of the student	Title of the	Major	Year	Outcomes (2-3 lines)
No.		Thesis	Subject		
5.	Dr. Pinaki Bhattacharyay	Studies on	Veterinary	2019-2021	
	2019-V-30(M)	pathology and	Pathology		
		diagnosis of			
		Lympho-			
		proliferative			
		diseases with			
		special reference			
		to Marek's			
		Disease and			
		Avian Leukosis in			
		the chicken			
		population of			

		Mizoram			
6.	Dr. Sheityabati Sagolsem 2018-V-30 (M	Clinico – Pathomorphologic al studies on coccidial infections in chicken population of Mizoram.	Veterinary Pathology	2018- 2020	Recorded prevalence of four different species of coccidian in poultry population of Mizoram.
7.	Dr. Biswadeep Behera 2018-V-42 (M)	Pathological studies on post mortem specimens and specimens collected from slaughtered cattle in Aizawl district of Mizoram.	Veterinary Pathology	2018- 2020	Detected babesiosis in slaughtered cattle in Mizoram.
8.	Dr. Sikder Jabidur Islam 2018-V-29 (M)	Studies on incidence, pathology and diagnosis of Ascites syndrome in poultry population of Mizoram.	Veterinary Pathology	2018- 2020	First report on Ascites syndrome with co-infections of infectious bronchitis in chicken population of Mizoram Recorded Ascites syndrome as a major cause of mortality in broiler population.
9.	Dr. Jahnabi Jyoti Kalita 2017-V-26(M)	Clinico- pathological studies on spontaneously occurring mycotoxicosis in chicken population of Aizawl, Mizoram.	Veterinary Pathology	2017 - 2019	Detection and estimation of aflatoxin, ochratoxin, zearalenone, DON and T2 toxin contamination of chicken feed in Aizawl region was performed. The associated pathology was studied.
10.	Dr. Kiran J. 2017-V-27(M)	Studies on occurrence and pathology of canine neoplasms in Aizawl district of Mizoram	Veterinary Pathology	2017 - 2019	Recorded occurrence of neoplastic diseases in canine population of Mizoram.
11.	Dr. Elangbam Dinesh Singh 2017-V-30(M)	Studies on incidence, pathology and molecular diagnosis of spontaneous Duck virus enteritis in Manipur. Studies on	Veterinary Pathology Veterinary	2017 - 2019 -	Recorded outbreaks of Duck plague in duck population of Manipur. First confirmed report on

	2017-V-25(M)	Hydropericardium hepatitis syndrome caused by Fowl aviadeno virus C in poultry population of Mizoram.	Pathology	2019	Hydropericardium hepatitis syndrome caused by Fowl adenoviruses [Suohu, S., Rajkhowa, T. K. , (2020). Prevalence and Molecular Diagnosis of Hydropericardium Hepatitis Syndrome in the Poultry Population of Mizoram, India. B-3923,[1-5]10.18805/ijar.B-3923].
13.	Dr. Hamari Debbarma, 2016-V-27 (M)	Pathological investigation on viral diseases of poultry in Tripura.	Veterinary Pathology	2016-2018	1.Recorded outbreaks of common poultry diseases in poultry population of Tripura.
14.	Dr. Lalrinkima, Roll No. 2016-V-26 (M),	Pathological studies on post mortem and slaughter house specimens of canine in an around Aizawl district of Mizoram	Veterinary Pathology	2016-2018	Lalrinkima, Rajkhowa T.K. , Singh Y.D.,Ravindran R. and Arya R.S. (2019).Pathology and molecular detection of canine parvovirus in Aizawl, Mizoram.Indian J. Vet. Pathol., 43(3): 228-230,
15.	Dr. Abhijit Deka, 2016-V-28 (M)	Pathology, diagnosis and genetical characterization of Chicken infectious anemia virus in poultry population of Mizoram.	Veterinary Pathology	2016 - 2018	1. First confirmed report on chicken infectious anaemia in chicken population of Mizoram [Deka A., Rajkhowa T.K.* , Singh YD, Ravindran R, Arya RS. (2018).Studies on the prevalence, clinic-pathology and molecular diagnosis of Chicken infectious anaemia virus (CIA) in poultry in Mizoram, India. Indian Journal of Veterinary Pathology. 42(3):177-180].
16.	Dr. Kim Jamoh, 2015-V-26 (M)	Pathology of Colibacillosis caused by antibacterial resistant E. coli in poultry population of Mizoram	Veterinary Pathology	2015 - 2017	1. First report on colibacillosis caused by antimicrobial resistance <i>E. Coli.</i> [Jamoh, K., Rajkhowa T.K.* , Singh YD, Ravindran R, Arya RS. (2018).Antimicrobial resistant E. Coli and associated Colibacillosis in poultry population of Mizoram. Indian Journal of Veterinary Pathology. 42(3):185-190.]
17.	Dr. Michael Lalramchhana. 2015-V-25(M)	Pathology of salmonellosis caused by antimicrobial resistant Salmonella in poultry	Veterinary Pathology	2015-2017	Recorded Pulloram disease in poultry population of Mizoram.

18. Dr. G. Lulinlu Kabui, 2014-V-08(M) 2014-V-09(M), populations of chickens in and around Shillong, Meghalaya 2014-V-09(M), Meghalaya 2015-V-09(M), Meghalaya 2015-V-09(M			population of Mizoram.			
Roll No. 2014-V-09 (M), prevalence and pathology of viral diseases of chickens in and around Shillong, Meghalaya	18.	1	Studies on pathology and diagnosis of infectious bronchitis (IB) in poultry populations of			First confirmed report on infectious bronchitis in poultry population of Mizoram.
V-12(M) prevalance and diagnosis of PCV2 & PRRSV associated reproductive failures in pig populations of Nagaland. 21. Dr. Amrit Gogoi. (2012-V-09M) 22. Dr. Lhaki Doma Bhutia 2012-V-08 (M) 22. Dr. Lhaki Doma Bhutia 2012-V-08 (M) 23. Dr. Lhaki Doma Bhutia 2012-V-08 (M) 24. Dr. Lhaki Doma Bhutia 2012-V-08 (M) 25. Dr. Lhaki Doma Bhutia 2012-V-08 (M) 26. Dr. Lhaki Doma Bhutia 2012-V-08 (M) 27. Dr. Lhaki Doma Bhutia 2012-V-08 (M) 28. Dr. Lhaki Doma Bhutia 2012-V-08 (M) 29. Dr. Lhaki Doma Bhutia 2012-V-08 (M) 20. Dr. L	19.	•	prevalence and pathology of viral diseasesof chickens in and around Shillong,	•	2014-2016	Pathology and molecular diagnosis of viral diseases affecting chickens in and around Shillong, Meghalaya. <i>Indian Journal of Veterinary</i>
Dr. Amrit Gogoi. (2012- V-09M) Studies on prevalence, pathology and diagnosis of PRRS in pig population of Mizoram. Pathology and diseases of poultry in Mizoram Pathology Pathology Pathology Pathology Pathology Pathology Pathology PRRS India [Gogoi A., Rajkhowa T.K Singh Y.D., Ravindran R., Arya R. Hauhnar L. (2017). Epidemiology porcine reproductive and respirate syndrome (PRRS) outbreak in Indian Journal of Veterinary Pathology. 41(1):31-37] Pathology	20.		prevalance and diagnosis of PCV2 & PRRSV associated reproductive failures in pig populations of	_		Nagaland [L.J. Kikon, T.K. Rajkhowa* , R.S. Arya, Y.D. Singhand R.Ravindran R. (2017). Seroprevalence of Porcine Circovirus Type-2 (PCV2) and molecular diagnosis of PCV2 associated reproductive failure in pig population of Nagaland. <i>Indian Journal of</i>
studies on viral diseases of poultry in Mizoram Pathology Pathology poultry diseases in poultry population of Mizoram [L.D. Bhutia, T. Rajkhowa, Ravindran R., R.S. Arg. P. Roychoudhury, R.K. Mandak and Y.D.Singh* (2017). Occurrent of Newcastle disease in poultry population of Mizoram, India. India Journal of Vetering	21.	•	prevalence, pathology and diagnosis of PRRS in pig population of		2014	1. First thesis on PRRS outbreaks in India [Gogoi A., Rajkhowa T.K.*, Singh Y.D., Ravindran R., Arya R.S., Hauhnar L. (2017). Epidemiology of porcine reproductive and respiratory syndrome (PRRS) outbreak in India. <i>Indian Journal of Veterinary Pathology</i> . 41(1):31-37]
		2012-V-08 (M)	studies on viral diseases of poultry in Mizoram	Pathology		poultry diseases in poultry population of Mizoram [L.D. Bhutia, T.K. Rajkhowa, Ravindran R., R.S. Arya, P. Roychoudhury, R.K. Mandakini and Y.D.Singh* (2017). Occurrence of Newcastle disease in poultry population of Mizoram, India. <i>Indian</i>

24.	CAU/221-V/06(B) Dr. Lalnunfella Chhangte	pathology and diagnosis of Porcine circo virus-2 associated reproductive failure in pigs of Mizoram	Pathology Veterinary	2011 -	in pigs caused by PCV2 in pig population of Mizoram [Laltlankimi, Ravindran R., Rajkhowa T. K, Chhangte L. 2016. Pathological diagnosis of porcine –circo virus – 2 associated reproductive failure in pigs of Mizoram. <i>Indian J. Vet. Pathol.</i> 40 (3): 261-263]. 1. First thesis on PMWS in pig
24.	(2011-V-04 M)	pathology and diagnosis of Post weaning multisystemic disease (PMWS) of pigs in Mizoram.	Pathology	2013	population of Mizoram.
25.	Dr. David Malswamkima , Reg. No: 2009-V-13(M)	Sero surveillance and Molecular Diagnosis of Classical Swine Fever in Mizoram	Veterinary Pathology	2009 -	1. Recorded field outbreaks of Classical swine fever in pig population of Mizoram (Malswamkima D, Rajkhowa TK , Chandra R and Dutta TK. (2015).Pathology and molecular diagnosis of classical swine fever in Mizoram. <i>Veterinary world</i> , 8(1):76-81.)
26.	Studies on pathology and diagnosis of Lymphoproliferative diseases with special reference to Marek's Disease and Avian Leukosis in the chicken population of Mizoram	Dr. Pinaki Bhattacharyay	Veterinary Pathology	2022	 The prevalence, pathology and molecular diagnosis of Marek's disease in poultry population of Mizoram are studied. The prevalence, pathology and molecular diagnosis of avian leukosis complex in poultry population of Mizoram is studied.
27.	Studies on pathology and diagnosis of piglet mortality associated with viral aetiology in Meghalaya, India.		Veterinary Pathology	2022	 ASF has been identified as the major cause of pig mortality in Meghalaya during the period 2021-22. The circulating strain of ASFV has been characterized as genotype II.
28.	Studies on the pathomorphological changes and mortality pattern in broiler chicken in and around Aizawl district of Mizoram	Dr. Vanlalnunpuii Khawlhring	Veterinary Pathology	2022	 The age-wise mortality pattern of broiler chicken in and around Aizawl district of Mizoram in different seasons was studied. Infectious bursal disease, yolk sac infection, infectious bronchitis, ascites syndrome, Newcastle disease, colisepticemia and hydropericardium hepatitis syndrome were found to be the main causes of mortality of broiler

					chicken in and around Aizawl district
					of Mizoram.
29.	Pathology of naturally	Dr. Ishita Maity	Veterinary	2022	1. Pathology of naturally occurring
	occurring Aflatoxin B1 &		Pathology		Aflatoxin B1 & Ochratoxin A was
	Ochratoxin A				studied in the chicken population
	mycotoxicosis and their				of Aizawl.
	association with enteric				2. Occurrence of necrotic enteritis
	pathology with special				was found in the cases affected by
	consideration to necrotic				two mycotoxins.
	enteritis in chicken				3. Pathology of necrotic enteritis was
	population of Aizawl,				studied.
	Mizoram.				4, Occurance of Aflatoxin B1 and
					ochratoxin A combined
					mycotoxicosis was found in the
					chicken population of Aizawl.

3. DEPARTMENT OF LIVESTOCK PRODUCTION AND MANAGEMENT

Sl No	Title of the Thesis	Name of the student	Major subject	Year of compl etion	Outcome
30.	Comparisons of Broiler performance under intensive system and backyard system	Dr Rody Lalrinfeli Fanai	LPM	2009	Performance of broilers in terms of average daily gain and feed conversion efficiency was much better under intensive system of rearing as compare to backyard system. Rearing of broiler upto 3 months of age (common practice at village level) was found to be uneconomical under intensive as well as backyard system of rearing
31.	Effect of Zinc supplementation on the performance of Japanese Quails	Dr H.Lalliankimi	LPM	2010	Supplementation of zinc in the diet of Japanese Quails had no significant effect on growth performance, on hatchability and egg production. However, Zinc supplementationn help in reducing mortality rate in Japanese Quail.
32.	Effect of water quality and its sources on the performance of Broilers	Dr Jamlianthang	LPM	2010	Overall feed conversion ratio was significantly better in filtered drinking water compare to unfiltered drinking water. Filtration of water reduces mortality rate in birds irrespective of the locations.
33.	Performance of piglets under field condition of Mizoram	Dr C.Lalremruata	LPM	2010	In terms of growth Largewhite Yorkshire piglets performed better than Hampshire and Burmese black. Classical swine fever was the major cause of mortality in pigs in village level. High lacatational body weight loss causes delay in onset of post weaning heat in sows under

					field condition.
34.	Effect of early weaning on the performance of Piglets and sow in Mizo Local pig (Zovawk)	Dr F. Laldinthara	LPM	2012	Weaning at 6 th week can be an effective weaning strategy to increase the production efficiency of Zovawk under Intensive Housing system. However, a better ameliorative measure to prevent mortality in early weaned piglets. Litter Index was significantly higher in early weaned (4 th week) sows, although mortality rate in piglets were much higher when weaned at 4 th weeks of age.
35.	Effect of feeding frequency on the performance of broilers	Dr Elizabeth Lalbiaknungi Leihang	LPM	2012	Once a day feeding of broilers showed better performance
36.	A study on management practices of Local pigs under field condition of West Garo Hills district if Meghalaya	Dr Aba Liptos Marak	LPM	2013	Documentation of socio-economic status, various management practices followed by the pig farmer and performance of local pig in West Garo Hill district of Meghalaya
37.	Studies on pig farming systems under field condition in Imphal West district of Manipur	Dr Elangbam Shitaljit Singh	LPM	2013	The pig farmers in Imphal West of Manipur were predominantly of above proverty line, medium age, males of business class with secondary educations, from medium family size, amd marginal land holding capacitites. All the pig farmers practised natural service for breeding of sows. Crossbred pigs performed better than the local pigs in terms of litter size at birth and weaning, body weight at birth and weaning, age at first furrowing and furrowing interval as compare to local pigs
38.	Studies on backyard Fattener pig production system in Aizawl and Kolasib district of Mizoram	Dr C. Lalchhuanawma	LPM	2014	Cost of the weaned pigs was the principal component of expenditure in fattening pig production followed by cost of feed. Keeping aside non-paid cost of family labour, fattener pig production is Aizawl and Kolasib distric was economical. Swine fever, skin disease and parasitic infestation were common diseases found in pigs.
39.	Performance of early weaned pigs under cage system of rearing.	Dr Kha Lovingson	LPM	2014	Growth performance and feed efficiency of early weaned pigs were found to be better on slatted floor housing compare to solid concrete floor. Incidence of diarrhoea was also reduced in slatted floor compare to solid concrete floor
40.	Effect of age and rearing system in the performance of Broilers	Dr Angela L. Renthlei	LPM	2015	Overall performance of broilers under intensive system of rearing was found to be better than that backyard system of rearing. From economic point of view rearing of broiler birds upto 12 weeks of age is not recommneded in

					backyard system of rearing
41.	Use of effective Microbial Technology in fattening pigs in deep litter housing system	Dr Menalsh Laishram	LPM	2015	Deep litter housing along with fermented feeding might has got the merit in reducing occurancees of diseases, facilitating for normal behaviou vis a-vis minimizing aggressiveness in pigs, and reducing malodour in the environment. Based on benefit Cost ration, Deep Litter Housing plus conventional feeding system was found to be the best system, followed by deep litter plus fermented and conventional housing and feeding system.
42.	Effect of early weaning management on performance of Large White Yorkshire pigs	Dr Karuna Saikia	LPM	2017	With proper housing and feeding system, early weaning of piglets can be done on day 24 under Indian conditions.
43.	Studies on performance and behaviour of growing kids managed with or without concentrate supplementation.	Dr Sharon Vikram Pratap Dewan	LPM	2017	Concentrate supplementation improves the performance and behaviour of growing kids.
44.	Effect storage period and egg weight on hatchability of Japanese Quail eggs and subsequent growth performance of chicks	Dr Chandra Debbarma	LPM	2018	Egg quality as well as hatchabilty percentage decreases significantly beyond 6 days of storage in room temperature. Hatchlings from large eggs had significantly higher body weight compare to hatchlings from small eggs. The average body weight gain and feed conversion ration was significantly better for chicks hatch from large eggs compare to smalle eggs
45.	"Effect of herbal supplement Shatavari (Asparagus racemosus) on performance of Large White Yorkshire Sow	Dr.Lakshya Jyoti Kakati	LPM	2018	Dietary supplementation of Shatavari @ 100 and 200mg/kg body weight in Largewhite yorkshire sow during last trimester of gestation didn't show any significant difference on performance parameters such as litter size and litter weight at birth, incidence of dystocia, number of mummified and still born piglets, furrowing duration, weight of placenta, sow body weight and backfat thickness changes during gestation.
46.	"Effect of Dietary supplementation of garlic and ginger on the performance of weaner pigs"	Dr. Malsawmkima	LPM	2019	Dietary supplementation (1.5%) of ginger and garlic helps to improve growth performance, to reduce incidence of diarrhoea and faecal coliform count in weaner pigs.
47.	"Effect of Nutritional Supplementation of Neonatal Pig on Growth and	Dr. Nanda Kumar Roy	LPM	2019	Oral nutritional supplementaation containing Bovine colostrum, egg yolk, probiotics, dextrose, zinc oxide and chilated iron during neonatal period was found to be effective to

	Survivability during Pre-weaning Period"				improve growth rate and survivability during pre-weaning period.
48.	"Comparative Efficacy of Different Methods of Castration on the Growth Performance and Certain Carcass Characteristics of Growing Finishing Pigs"	Dr. Vanlalhmangaih sanga	LPM	2019	The pig castrated with Silver Nitarte was found to have better performance in terms of body weight, average daily gain, feed conversion efficiency as compare to open method of castration.
49.	Effect Of Dietary Supplementation Of Vitamin E On Internal Egg Quality Of Japanese Quail (Coturnix coturnix japonica) Egg.	Dr. Bidyut Sarma	LPM	2019	Hatchability, egg quality and egg production could be improved in layer quails and quail chick growth improved through Vitamin E supplementation in breeding quails
50.	Effect of Dietary Supplementation of Guava (Psidium guajava) Leaves on Performance of Young Pigs During Pre and Post- Weaning Periods	Dr. C. Vanlalpianpuia	Livestoc k Producti on and Manage ment	2021	Dietary supplementation of guava leaves to young pigs during pre and post weaning period had significant positive effects on growth performance, occurrence rate (%) of diarrhoea, a slight but non-significant beneficial effects on metabolic activity of peripheral blood leucocytes (Phagocytes) as well as haemato-biochemical indices.
51.	Management of orphan piglets under intensive system of rearing	Dr. A.Khozhiio Kayina	Livestoc k Producti on and Manage ment	2021	Orphan piglets can be reared safely by maintaining strict hygiene, good feeding and optimum microclimatic condition under intensive system of rearing.
52.	Growing Kids under Grazing and Stall Feeding Rearing Systems	Dr. David H. Beihroly	Livestoc k Producti on and Manage ment	2021	Growth performance of growing kids can be improved by concentrate feed supplementation and without any significant differences in regard to the behavior of the animals under stall feeding condition
53.	Effect of Turmeric Powder Supplementation on the Performance of Japanese Quails	Dr. Sushitra Devi Longjam	Livestoc k Producti on and Manage ment	2021	Turmeric powder can be supplemented at 1 percent and 2 percent level in the feed to improve egg production and the internal egg qualities in regard to yok index, yolk color of quail eggs. It can be added to improve body weight, FCR, decreases mortality and age at laying in quails.
54.	Effect of fermented liquid feed on performance of young pigs during pre and	Dr Ranjit Rewar	Livestoc Producti n and Manager	0	Feeding of fermented liquid feed (FLF) helped to reduce the occurrence of diarrhoea without affecting average daily gain (ADG) and blood biochemical parameters during pre and post

	post weaning periods		ent		weaning period.
55.	A Comparative Study on Performance Of Young Pigs Fed Diet Containing Skimmed Milk and Milk Replacer During Pre and Post Weaning Period	Dr Rubyta Chanam	Livestoc k Producti on and Manage ment	2022	A Comparative Study on Performance of Young Pigs Fed Diet Containing Skimmed Milk and Milk Replacer During Pre and Post Weaning Period revealed that milk replacer powder can be used as a substitute to skimmed milk powder for feeding LWY young pigs to minimise the feed cost during pre and post weaning periods.
56.	Effect of dietary supplementation of turmeric (Circuma longa) on performance of young pigs during pre and post weaning periods	Dr Joseph Lalruatkima Stevenson	Livestoc k Producti on and Manage ment	2022	Dietary inclusion of dry turmeric powder at 0.5% or 1.0% level in pre and post weaning diets improved growth performance, general appearance without any adverse effect on the health status of LWY young pigs especially during post weaning period

4. DEPARTMENT OFLIVESTOCK PRODUCTS TECHNOLOGY

Sl. No.	Title of the Thesis	Name of the student	Major Subject	Year of compl etion	Outcome
57.	A Comparative Study on The Shelf Life of Traditional and Modified <i>Vawksa rep-</i> A Local Pork Product of Mizoram	Lalchamliani	Livestock Products Technology	2013	Adoption of curing technique and application of <i>NISIN</i> , a new and much quality assured and enhanced Modified form of <i>Vawksa rep</i> could be developed successfully.
58.	A Study on Development of Ready-To Eat Vawksa-Rep – A Traditional Pork Product of Mizoram.	Deepshikha Deuri	-do-	2014	Ready-To Eat Vawksa-Rep could be developed with curing as well as aerobic and vacuum packaging methodn
59.	Development of shelf stable Ready-to-eat shredded pork pickle	Dilrash Mayanglamb am	-do-	2015	Reary to eat pork shredded pickle could be developed using bhoot jolokia.
60.	Effect of <i>NISIN</i> on shelf life of low fat minced chicken sausage	Moon Choudhury	-do-	2017	Superior quality low fat minced chicken sausages could be developed.
61.	Development of shelf-stable puffed pork rind (vawk savun)"	Lhingneihoi Hangsing	-do-	2018	Pork rind which is a byproduct could be successfully converted into a value added snack item.
62.	Effect of a protective culture	Pompi Rani	-do-	2018	Biopreservation of chicken fillets could

	(Lactobacillus sakei) on storage life of chicken fillets	Boro			be successfully carried out by using the starter/protective culture of <i>Lactobacillus sakei</i>
63.	Development of enrobed chicken meat products using curry leaves, orange peel powder and cinnamon powder	Pranab Boro	-do-	2019	Enrobing of chicken meat products could be successfully carried out by using these antioxidant rich ingredients.
64.	Studies on the effect of different type of marinades on quality of cooked chicken breast fillets	Jesmin Khatun	-do-	2019	Different organic acids and curd were tried for marinating chicken breast fillets and reorted satisfactory results for extending the shelf life
65.	Studies on low cost smoked chicken sausages incorporated with bamboo shoot	Chandana Sonowal	-do-	2019	Bamboo shoot, which is a locally available material here in the North East was successfully used for developing low cost chicken sausages.
66.	Quality Evaluation of ready- to-eat low fat pork sausage incorporated with olive oil, dried apple pulp powder, and pomegranate seed powder	Keshab Debnath	-do-	2020	Ready-to-eat low fat pork sausage incorporated with olive oil, dried apple pulp powder, and pomegranate seed powder could be developed successfully and they could be stored well upto 15 days in refrigeration temperature.
67.	Quality Assessment of ready- to-eat low fat pork momo incorporated with olive oil and dietary fibres during refrigerated and frozen storage	Anannya Das	-do-	2020	Ready-to-eat low fat pork momo incorporated with olive oil and dietary fibres like oats, cabbage and oyster mushroom were developed.
68.	Quality of chicken nuggets incorporated with Groundnut and Pomegranate rind powder	Sandip Kumar	-do-	2020	Chicken nuggets were developed with antioxidant rich material like groundnut and Pomegranate rind powder and could be preserved well upto 15 days at refrigeration temperature
69.	Use of Hurdle Technology for developing a modified form of <i>Vawksa rep</i>	Saifur Rahaman	Livestock Product Technology	2021	By using different hurdles a modified form of <i>Vawksa rep</i> (an ethynic pork product of Mizoram) could be developed with a great taste and extended shelf life of 6 days while stored at ambient temperature and 20 days at refrigerated temperature (4±1°C)
70.	Development and Quality Assessment Of <i>Wahan Mosdeng (Pork Vorta)</i> by using Hurdle Technology	Santanu Nath	Livestock Product Technology	2021	Hurdle Technology was used to extend the shelf life of an ethnic pork product of Tripura and the study was fruitful as the shelf life could be extended upto 15 days at refrigerated temperature (4±1°C) and 30 days at frozen temperature (≤-18°C)

5. DEPARTMENT OF VETERINARY PHYSIOLOGY

M.V. S	Sc.				
Sl. No.	Title of the thesis	Name of the student	Major subject	Year of completion	Outcome (2-3 lines)
	ULTRY				
DISC	IPLINE: Veterinary Ph	ysiology			
	SIFICATION/CATEG		siology		
71.	Expression analysis of HSPs and TLRs of indigenous chicken of Mizoram in response to heat and cold stress	Dr. Vanlalngilneii Ralte	Veterinary Physiology	2016	Indigenous chicken of Mizoram had higher HSP70, TLR3 and TLR4 during summer stress. Cold stress caused increase in expression of HSP70 and TLR4 in indigenous chicken.
72.	Stress status and egg characteristics of layers supplemented with chromium and vitamin C during winter.	Dr. Joycy Seiba Khukhodzinaii	Veterinary Physiology	2021	White Leghorn layers experienced mild stress in winter and drop in some egg characteristics. Supplementation of chromium and vitamin prevented winter stress and drop in egg quality.
73.	Haemato-Biochemical Profile and Growth Performance of BroilerChicken Supplemented with Green Leaves of Brassica juncea and Brassica oleracea"	Dr. Sopun Jyoti Bhuyan	Veterinary Physiology	2022	Dietary supplementation of green leaves of <i>Brassica juncea</i> and <i>Brassica oleracea</i> in broiler chickenscaused changes in a few hemato-biochemical parameters in the present investigation. However, green leaves of <i>Brassica juncea</i> and <i>Brassica oleracea</i> could be incorporated <i>ad libitum</i> into the diets of broilers sinceit does not significantly change the body weight in the control and the treatment groups. It also decreases significantly the feed intake of basal diet (commercial feed) which ultimately decreases the feed cost.
74.	Stress status and egg characteristics of layers supplemented with chromium and vitamin C during winter	Joycy Seiba Khukhodziinai	Veterinary Physiology	2021	White Leghorn layers experience mild cold stress in winter. Supplementation of chromium picolinate, vitamin C and their combination during winter reduces cold stress in White Leghorn layers.
75.	Stress and	Susmita	Veterinary	2021	Weaning causes stress to

antioxidative status	Majumder	Physiology	both Zovawk and Large
of Zovawk and Large			white Yorkshire piglets.
White Yorkshire			 Weaning stress lowers
piglets after weaning			antioxidative status of
			both Zovawk and Large
			white Yorkshire piglets.
			Salivary alpha amylase is found
			to be a stress marker.

6. DEPARTMENT OFVETERINARY BIOCHEMISTRY

	DEPARTMENT OF V	EIEKINAI	XI BIOCIII	W119 1	IXI						
1. Pig											
	DISCIPLINE: Veterinary Biochemistry CLASSIFICATION/CATEGORY: Characterization of Immunocompetence										
CLA	SSIFICATION/CATE(racterizatio	n of Ir	nmun						
76	Dynamics of mitogen stimulated cytokine gene expression in peripheral blood mononuclear cells of local and exotic breeds of pigs reared in Mizoram	Dr. P. Kirthika	Veterinary Biochemist	ry	014	The expression kinetics of key cytokine genes in the phytohemagglutinin stimulated peripheral blood mononuclear cells of Zovawk and Large Lhite Yorkshire pigs revealed remarkable difference between the two breeds of the pigs. This study forms an initial step in understanding the molecular basis of higher immune competence levels of local pigs as compared to exotic ones.					
	SSIFICATION/CATE										
2. Mi DISC CLAS	Comparative salivary proteome analysis to identify early pregnancy-specific protein biomarkers in pigs thun CIPLINE: Veterinary B SSIFICATION/CATEO Hemato-biochemical	Dr. Monti Das ciochemistry GORY: Bloc	Veterinary Biochemist ry od biochemic Veterinar		ofile	First report on global salivary proteome profiles of an early pregnancy stage and non-pregnant sows. Identified a set of salivary proteins which can be used as potential biomarkers for early pregnancy diagnosis.					
/8.	profile of Mizoram strain female mithun (Bos frontalis)	Lalsang puii	y Biochemi	2013		nerated baseline data of hemato-biochemical parameters female mithun of Mizoram state.					
3 Ro	<u>(Bos frontaits)</u> cteria		stry								
	CIPLINE: Veterinary B	iochemistry									
	SSIFICATION/CATE(
79. 4	Assessment of invitro growthkinetics andpathogenicity of recoded mutantof Salmonella Typhimurium	Dr. Laxmi Noatia	Veterinary Biochemist y		21	Recoding key anaerobic regulator of Salmonella Typhimurium compromised the growth of the mutant. Further, the in vitropathogenicity related parameters also reduced significantly in mutant. Thus, recoding of fir decreased the pathogenicity of Salmonella Typhimurium during anaerobiosis.					
	2020-MAY 2022										
80.	Assessment of in	Dr. Laxmi	Animal	20	21	Recoding key anaerobic regulator of Salmonella					

	vitro growth kinetics and pathogenicity of recoded mutant of Salmonella Typhimurium	Noatia	Biochemistr y		Typhimurium compromised the growth of the mutant. Further, the <i>in vitro</i> pathogenicity related parameters also reduced significantly in mutant. Thus, recoding of <i>fnr</i> decreased the pathogenicity of <i>Salmonella</i> Typhimurium during anaerobiosis.
81.	Comparative salivary proteome analysis to identify early pregnancy specific protein biomarkers in pigs	Monti Das	Veterinary Biochemistr y	2021	Firs report on global proteome profiling of saliva in early pregnancy stage and non-pregnant sows Proteins such as thioredoxin, HSPA1A, alpha 1-S haptoglobin and GST pi 1 were found to be differentially expressed statistically and may have potential as biomarkers for early pregnancy diagnosis in pigs.

7. DEPARTMENT OF VETERINARY PHARMACOLOGY & TOXICOLOGY

Sl.No.	Title of the Thesis	Name of s Student	,		Year Comp	oleti	Outcome (2-3 lines)			
	1. Rat									
Veterir	Veterinary Pharmacology & Toxicology									
	Classification/Category: Ethnoveterinary medicine									
82.	Evaluation of Analgesic, Antiinflammatory and Antipyretic properties of Eupatorium adenophorum (Sticky Snake Root) in Rats	Bijargi Shrihar sh Ramesh war	Pharmacol ogy & Toxicology	20		Eupar signif exper anti-in induc induc	ethanolic and aqueous extracts of torium adenophorum (Spreng) shows ficant analgesic activity in different imentally-induced pain and significant inflammatory activity in carrageenaned rat paw edema model, cotton pellet ed granuloma test and appreciable y in rats at 10 and 30 mg.kg-1; PO.			
83.	Pharmacological studies on Clerodendron colebrookianum with special reference to its hypoglycemic and hypolipidemic activities in rats	Snigdha Hazarik a	Pharmacol ogy & Toxicology	20	010	Clero signif effect blood increa	dendron colebrookianum could cause icant dose dependent hypolipidemic and dose dependent reduction in			
84.	Studies on Wound Healing Potential of Ageratum conyzoides, Gynura crepidioidesandEupatorium adenophorum in Rats	Anwar Hussain Hazarik a	Pharmacol ogy & Toxicology	20)11	The <i>Agera</i> and	methanolic extract ointments of atum conyzoides, Gynura crepidioides Eupatorium adenophorum at 5 and (w/w) are effective for treating wound			
85.	Studies on Hepatoprotective effect of <i>Dendrocnide sinuata</i> , an indigenous perennial shrub	Binita Angom	Pharmacol ogy & Toxicology	20		roots body dama hepat	aqueous and methanolic extracts of of <i>Dendrocnide Sinuate</i> @ 100 mg.kg ⁻¹ weight P.Oin CCl ₄ induced hepatic ge of rats shows significant oprotective effects when compared standard drug.			
86.	Pharmacological evaluation on Wound healing potential of	C. Lalchha	Pharmacol ogy &	20)11	The n	nethanolic extracts of <i>Schima wallichii</i> , torium odoratum and <i>Mikania</i>			

	Schima wallichii, Eupatoriu odoratum and Mikan micrantha in rats		Toxicology		micrantha have low mammalian toxicity potential in rats and these plant extract exerted wound healing properties in different experimentally-inflicted wounds in rats
87.	Pharmacological evaluation Mikania micrantha an Centella asiatica with speci reference to antihyperglycem effect in diabetic rats	nd aksangi al	Pharmacol ogy & Toxicology	2011	The methanolic extract of Mikania micrantha and Centella asiatica are nontoxic to mice on single dose exposure at 2000 mg.kg-1 and exerted antihyperglycaemic and antihyperlipidemic effects in experimentally-induced Type-I (streptozotocin-induced diabetes) and Type-II (D-fructose-induced diabetes) diabetes in Wistar rats confirming the validity of use of these plants in traditional medicine for the treatment of diabetes in man. However, both the extracts did not exhibit significant hypoglycaemic property in glucose tolerance test in rats.
L			2. Rabbit	ı	
	nary Pharmacology & Toxicolo	-			
	sification/Category: Pharmaco			T	
88.	Comparative Pharmacokinetics of Ofloxacin in uncastrated and castrated Rabbits	W. Ramdas Singh	Pharmacolo gy & Toxicology	2010	Reduced clearance of ofloxacin after castration of adult rabbit indicates need for dose adjustment of ofloxacin in castrated rabbit
89.	Bioequivalence studies on three formulations of Ofloxacin in Rabbits	Gracia Lalchham zuali	Pharmacolo gy & Toxicology	2011	Pharmacokinetic disposition and bioequivalence evaluation of three ofloxacin oral solutions was carried out in healthy castrated male rabbits after oral administration and the pharmacokinetic data observed and generated shows that none of the three formulations of ofloxacin can be considered bioequivalent
			3. Pig		
	nary Pharmacology & Toxicolo				
	sification/Category: Pharmaco			1	
90.	Studies on Pharmacokinetic disposition of Ceftriazon following single dos intravenous and intramuscular administration in Mize Local Pig (Zovawk)	Lalrinp e uia	Pharmacolo gy & Toxicology	2012	Based on the pharmacokinetic behavior of ceftriaxone following a single IV and IM administration @ 20 mg.kg ⁻¹ , the calculated dosage regimen for IV is 17.5 mg.kg ⁻¹ and 16.5 mg.kg ⁻¹ and for IM, it is9.5 mg.kg ⁻¹ and 7.5 mg.kg ⁻¹ as loading and maintenance dose repeated at 8 h and 12 h intervals for IV and IM routes that will give a target plasma concentration (C _p) of 0.6 µg.ml ⁻¹

8. DEPARTMENT OF ANIMAL NUTRITION

MVS	c Programme			
Then	natic research area: Utilization o	f locally available f	eeds and foo	ldersfor livestock and poultry feeding
	ies: Swine	•		
Sl No.	Title of the thesis	Name of the student& Degree programme	Year of completi on	Salient outcomes
91.	Effect of feeding chayote (Sechium edule) fruits and leaves on growth, nutrient utilization and carcass characteristics of indigenous breed of pigs	Dr. James Lalthansanga 2009-V-07(M)	2011	In the pig's diet, standard grower ration may be replaced up to 40% by chayote meal safely without any adverse effects on growth, feed conversion efficiency, nutrient utilization and carcass characteristics. It was also observed that replacement of concentrate mixture with chayote meal could be economic and profitable to pig farmers
92.	Effect on the growth performance, nutrient utilization and carcass characteristics of indigenus growing pigs by feeding diet containing sweet potato (<i>Ipomoea batatas</i>) meal	Dr. Suzanne Malsawmthangi 2009-V-06(M)	2011	Sweet potato meal (SPM)(leaf and root at 1:1 ratio) can replace standard pig grower ration up to 75% without any adverse effect on growth, feed conversion efficiency, nutrient utilization as well as carcass characteristics of the indigenous growing pigs. It was also concluded that replacement of concentrate mixture up to 75% with SPM could be economic and profitable to pig farmers.
93.	Performance of Local Growing Pig (Zovawk) Fed on Maize- replaced Wheat Bran and Rice Bran Based Diet	Dr. Y. MeryChanu 2012-V-11(M)	2014	Recommended to replace maize up to 60% with Wheat bran and Rice bran in pig's diet
94.	Performance of Growing Pigs (Large White Yorkshire) Fed Rations with Varying levels of Japan Hlo (Mikania micrantha Kunth) Meal as Protein Source.	Dr.EnethLalhuth angi 2013-V-04(M)	2015	Recommended to include up to 15% level as substitute of soyabean meal at an equivalent protein basis
95.	Effect of feeding rubber seed (<i>Hevea brasiliensis</i>) meal on growth, nutrient utilization & blood biochemical parameters in growing pigs.	Dr Diptanu Das 2018-V-06(M)	2020	Recommended to replace of maize up to 30% with overnight rubber seed meal (RSM) in pig's diet without any adverse effect on growth performance, nutrient utilization and blood biochemical parameters of growing pigs
Spec	ies : Poultry			
96.	Growth performance, nutrient utilization and carcass characteristics of	Dr. K. Lalrinsangi 2009-V-10(M)	2011	Cassava meal (root and leaf at 4: 1 ratio) up to 30% can be used in broiler ration by replacing maize without causing any adverse effect on the

	broilers fed diet containing				performance of the birds.	
	cassava meal as a substitute					
97.	Study on the performance of broiler chicken fed on partially Maize replaced diet with Palm oil	KekiepeuNza		2017	Palm oil (<i>Elaeisguineensis</i>) sludge can be included up to 20% level as replacement of maize in broiler ration	
Thor	(Elaeisguineensis) sludge	nning of NE st	otos o	nd proporat	ion of Area Specific Mineral mixtures for livestock	
	es: Cattle and swine	apping of NE su	ates a	na preparat	ion of Area Specific Wilherar mixtures for fivestock	
98.	Studies on mineral status of soil, plant-animal system for augmenting livestock productivity in Aizawl District of Mizoram	Dr.Pawar Shiv Pandurang	vaji	2009	Major (Ca & P) and Micro minerals(Cu, Fe, Zn, Co & Mn) are deficient in cattle	
Then	naticresearch area: Feed Proces	ssing & conserv	vatior	n of feeds ar	nd fodders	
	es : Poultry					
99.	Effect of fermented dried feed on growth performance, nutrient utilization and carcass characteristics of Broiler birds.	Dr.Vaisakh V.P. 2017-V- 03(M)	2019	combi fed to ferme	ented dried feed with <i>Bacillus subtilis</i> alone or in ination with avian specific <i>Lactobacillus spp.</i> can be broiler chickens to improve the performance and ented dried feed has the potential to be used as ative to antibiotic growth promoters in broiler birds	
Then	natic research area: Feed addi	tives as an alter	nativ	e to Antibio	tic growth promoters for swine and poultry	
Speci	es: Poultry					
100.	Effect of dietary supplementation or organic acids blend and garlic on performance of broiler birds	Dr. Jagadish Hazarika 2015-V- 34(M)	201	(0.5%	ementation of garlic (2%) and organic acid blend) in the diet of broiler chickens recommended to ve feed conversion efficiency.	
101.	Effect of plant extracts and essential oil blend as alternatives to antibiotic growth promoters on performance of broiler birds	Dr.PebamCh andrima Devi 2016-V- 04(M)	201	and es	extract (<i>Mikania micrantha &Garcinia lanceaefolia</i>) ssential oil (Cinnamon &Ajawain) supplementation diet of broiler birds showed significantly higher weight gain in broiler.	
102.	Effect of dietary supplementation of probiotic and aloe vera on performance of broiler birds	Dr.Sagarika Barman 2016-V- 05(M)	201		otic along with Aloe vera have the potential to be s AGP	
103.	Effect of dietary supplementation of Chicory root powder (Cichorium Intybus) and Probiotic on the growth performance, nutrient utilization and carcass	Dr David Lalthlamuana 2017-V- 04(M)	2019	Lactol birds chang observ There	ry root powder (1%) and avian specific pacillus spp supplementation in the diet of broiler showed significantly higher (P<0.01) body weight e as compared to control group and highest was red in chicory root powder supplemented group. Fore, Chicory root powder and avian specific acillus spp alone or in combination have the	

	characteristics of broiler birds.			potential to be used as alternative to AGP
	Effect of Moringa oleifera leaf extract and clove bud oil as alternative to Antibiotic growth promoter on performance of broiler birds	Dr Juli Chakma 2018-V- 04(M)	2020	Clove bud oil@0.6 g/kg of feed alone or in combination with Moringa leaf extract@ 0.55 g/kg of feed have the potential to be used as an alternative to Antibiotic growth promoters in the diet of broiler chickens
		alancing progran	nme for li	vestock with supplementation of critical nutrients
105.	es: Swine A study on nutritional constraints and possibilities for augmentation of pig production in Mizoram	Dr. P.C. Lalsangzuala 2009-V- 11(M)	2011	Rations which are generally offered to pigs by small-scale producers are usually unbalanced resulting in lower feed efficiency and hence increased input costs. These problems need to be solved by following scientific feeding practices in order to improve pig production and to increase the income of the poor.
106.	Effect of Low Crude Protein Diets Supplemented with Synthetic Amino Acids on Performance of Growing Cross-Bred (Yorkshire and Zovawk) Pigs	Dr. Salem Lallawmawm i 2013-V- 03(M)	2015	1.The reduction of dietary protein by 3% unit of NRC(1998) feeding standard in the diet of growing cross-bred (LWY x Zovawk) did not have any adverse effect on the performance, nutrient utilization and blood biochemical profile of the pigs. 2.Supplementation of limiting synthetic amino acids to the low crude protein diet of growing cross-bred (LWY x Zovawk) pig did not significantly improve the performance.
107.	Effect of Host Specific Probiotic (Bacillus spp.) and Chicory (Chicoriumintybus) Root Powder on Performance of Growing Pigs	Dr. Jayanta Banik	2021	Porcine specific <i>Bacillus subtilis</i> have the potential to be used as an alternative to AGP to improve the growth performance, antioxidant status and microbial status in growing pigs. However, Chicory root powder supplementation @1% in the diet of growing pigs did not show significant improvement in growth performance of growing pigs

9. DEPARTMENT OF ANIMAL REPRODUCTION, GYNAECOLOGY & OBSTETRICS

l. No	Title of the thesis	Name of the student	Major Subject	Year of Completion		Outcome (2-3 lines)
Mith	un					
108.	Periparturient behavioural, physical and haematobiochemical characteristics in female Mithun (Bos frontalis) of Mizoram	Dr. Peter Malsawmtlua nga 2011-V- 15(M)	Animal Reproduct ion, Gynaecolo gy & Obstetrics	2013	physical duration of the series of the serie	prepartum behavioural and sical changes along with tion of parturition in female temale mithun of Mizoram to recorded. Mean duration involution of uterus in female than has been found to be to similar with that of cattle buffalo. A significantly ter level of serum calcium, in magnesium, serum assium and serum sphorus were recorded in artum and post partum tun cows
109.	Studies on characteristics and freezability of mithun semen collected through electro-ejaculator.	Dr. Saddamhusen M.N. 2018-V-40 (M)	-Do-	2020	nand using accept moti across achies seme	un semen can be inedthoughelectroejaculatio cryopreservedsuccessfully gOptiXcell®as diluent and ptable levels of post-thaw lity, viable sperm and somal intactness could be eved. The cryopreserved en could also be utilized to olish pregnancy in mithun sthrough AI.
3	Yak					_
110.	"Induction of oestrus and its effect on conception in acyclic female yaks (<i>Poephagus grunniens L.</i>)"	Dr. Aniyang Lego 2014-V-13 (M)	-Do-	2016	fema sease stimu indu- resul treati	ction of oestrus in acyclic ale yaks during non-breeding on is possible. Ovarian presulation prior to oestrus ction protocols yield better its in inducing oestrus. G6G ment protocol gave better eption than the other two ocols in the present study.
	Pig		T	T T		
111.	Characteristics and preservation of semen of Mizo local pig (Zovawk) in liquid state	Dr. Lalhruaitlung a 2011-V- 13(M)	-Do-	2014	succe (Zova chara- comp breed was fe	emen was collected ssfully from Mizo local pig awk) and semen cteristics of were found to be arable with that for other s of pig. Modena extender ound to be superior for rvation at 18°C up to 72.
112.	"Semen cryopreservation of indigenous pig (Zovawk) of Mizoram "	Dr. Anup Kumar Das 2012-V- 13(M)	-Do-	2014	highe	se egg yolk Glycerol der was found to maintain r sperm motility, live sperm , plasma membrane integrity acrosomal integrity in

					Zovawk semen. Preservation in LEYG extender using 3 per cent glycerol found to be superior. Five hour of holding time for undiluted semen at 24°C provides better result.
113.	Effect of Semen Packaging Materials and A.I. Catheters on Fertility of Sows	Dr. K. Lalchhanhim a 2015-V-07 (M)	-Do-	2017	There was no significant effect of packaging material on sperm quality during preservation. Cochette was superior to plastic bottle for preservation of boar semen in term of litter size. Golden pig catheter is better than spiral catheter for artificial insemination (A.I) in terms of farrowing rate and litter size.
114.	"Effect of melatonin on quality of boar semen during liquid preservation"	Dr. M.S. Dawngliana 2015-V-06 (M)	-Do-	2017	Melatonin was found to have positive effect on sperm quality when added to GEPS extender for preservation of crossbred (75% Large White Yorkshire X 25% Zovawk) boar semen till 48 hours at 17°C in comparison to BTS and KIEV. Storage temperature of 17°C in BOD incubator was found to be superior over refrigeration temperature (5°C) and room temperature(22 to 25°C) in the presence of melatonin as semen additives for the preservation of crossbred boar semen till 48 hours.
115.	"Effect of Amides on Cryopreservation of Boar Semen".	Dr. John Rozarliana 2016-V-07 (M)	-Do-	2018	Methyl Formamide, Dimethyl Formamide and Dimethyl Acetamide could be used as a replacement of Glycerol for freezing of boar semen. 5% Dimethyl Formamide was found to be superior to 3 % and 7 % for freezing of boar semen. 6 hours holding time was found to be better than 2 and 4 hours holding times for freezing of boar semen.
116.	Studies on albumin separation of sperm to improve the quality of cross-bred boar semen	Dr. Dhanu Kumar Murasing 2018-V- 28 (M)	-Do-	2020	Semen quality of cross-bred (75% LWY x 25% Zovawk) boars was found to be better in 10% BSA as compared to 0%, 5% and 15% BSA in

					GEPS extender. Sperm quality of cross-bred boars was found to be better in bottom albumin column as compared to upper and middle columns with 10% BSA. Albumin column separation of cross-bred boars' sperm did not have any significant effect on fertility rate, litter size and sexratio.
	Effect of Antibiotic and Prostaglandin on Involution of Uterus in Crossbred Dairy Cows	Dr. Vanlalhriatpu ia 2013-V- 05 (M)	-Do-	2016	Administration of antibiotic and $PGF_{2\alpha}$ either alone or in combination was effective on involution period of cervix and uterus during postpartum period in crossbred cows. It was found that neither antibiotic nor $PGF_{2\alpha}$ had shown any positive impact on the immunity. However, the combination of the two may improve the immunity of postpartum cows.
118.	"Effect of Ovsynch and Ovsynch based GnRH treatments on conception rate in repeat breeding crossbred cows"	Dr. Nekibuddin Ahmed 2013-V-06 (M)	-Do-	2015	Initiation of Ovsynch treatment on day six of the estrous cycle caused 100 per cent ovulation and resulted in accessory corpus luteum in repeat breeding crossbred cows. An additional GnRH on day six after the second GnRH of Ovsynch also resulted in accessory corpus luteum after TAI helped to overcome progesterone deficiency in repeat breeding crossbred cows.
119.	Assessment of Postpartum Health Status for Cyclicity andeffect of Ovsynch and G6G Protocol on conception rate in Crossbred Anestrus Cow	Dr. Dhrubajyoti Borpujari 2016-V-06 (M)	-Do-	2018	BCS ≥3.25 (on a scale of 5) at calving had a normal postpartum oestrus within two months and BCS ≤ 2.25 (on a scale of 5) at calving had a prolonged post partum anoestrus. There was positive relation between level of serum glucose, total protein, cholesterol, BUN, calcium, phosphorus and magnesium with postpartum cyclicity of the

120	Studies of Reproductive	Dr. Sushmita	-Do-	2020	crossbred cows. The conception rate was higher in G6G protocol in comparison to ovsynch protocol in postpartum anoestrus crossbred cows.
120.	Parameters in Local Female Cattle of Mizoram (Zobawng)	Das 2018-V- 25 (M)		2020	Different reproductive parameters in local female cattle of Mizoram (Zobawng) were found to be similar with other cattle breeds/crossbreds cows with little variation in terms of estrus period, exhibited signs of estrus and involution of uterus.
121.	Studies on sexual behaviour and semen characteristics of indigenous cattle of Mizoram.	Dr. Ashiho Kayina 2018-V- 26 (M)	-Do-	2020	Sexual behavior and semen characteristics of indigenous bulls of Mizoram was found to be similar with other breeds of bulls. Freezing of Mizo cattle bull semen can be carried out with satisfactory post thaw quality.
122.	Assessment of suitable protocols for fixed time A.I. vis-à-vis early pregnancy diagnosis on crossbred cattle	Dr. Utpal Boro 2018-V- 27 (M)	-Do-	2020	Main causes of post-partum anestrus in crossbred cattle were found to be ovulatory disturbance, uterine infection and silent estrus. Select-synch protocol was found to be better than G6G and cosynch protocols in response to conception rate.
Dog		T	I	1	
123.	Characteristics and preservation on Mongrel Dog Semen in Mizoram".	Dr. Amy Zorinkimi 2011-V- 14(M)	-Do-	2014	The semen was successfully collected from mongrel dog of Mizoram and physical characteristics of semen were evaluated. TRIS was found to be superior extender preservation of mongrel dog semen at 5°C for upto 72 hours.
124.	Application of colour Doppler ultrasonography for diagnosis of pregnancy in bitch (canis familiaris)"	Dr. Moon Moon Haji 2015-V-07 (M)	-Do-	2017	Pregnancy was detected as early as on day 14 with 25% accuracy and day 21 onwards with 100% accuracy after mating using transabdominal B-mode ultrasonography and on 21 and 28 days after mating using colour Doppler ultrasonography. The vaginal cytological examination was applicable for staging the

						reproductive cycle of the bitches but could not be used as a definitive diagnostic tool for detection of pregnancy in bitches.
125.	"An Approach to Predict the Date of Parturition in Canine"	Dr. Gisha Tresa Binny 2017-V- 38 (M)	-Do-		2019	Of the different methods of prediction of parturition used, measurements of the biparietal diameter was found to be the accurate predictor of parturition followed by the prediction of whelping based on day 1 of diestrus and prediction based on the gestational sac diameter respectively. Almost all the dogs in this study delivered within 16.13 ± 0.66 hours after the prepartum drop in serum progesterone levels indicating that estimations of prepartum drop in progesterone levels could be an accurate predictor of time of parturition in bitches.
Goat	S					
126.	and colour Doppler ultrasonography in early pregnancy detection in doe (capra hircus)"	Dr. Ng. Saratchandra 2016-V-08 (M)	-Do-	20		Pregnancy was detected as early as day 24 with 33.33 % accuracy and day 28 onwards 100% accuracy by using B-mode ultrasonography transabdominally. Gestational age of the fetus was calculated accurately using the ultrasonographic measurement the fetal crown-rump ength (CRL). Ultrasonography was found to be a reliable method for early pregnancy diagnosis in does (Capra hircus).
	ipuri Pony			• • •	<u> </u>	
	"Study on Certain Aspects of Reproduction in female Manipuri ponies (Equus ferus caballus)" R JAN 2020-MAY 2022	Dr. N. Linda 2017-V- 23 (M)	-Do-	201	11 11 11 11 11 11 11 11 11 11 11 11 11	The different reproductive parameters of female Manipuri pony have been found to be similar with other breeds of horse with the exception of shorter gestation length and absence of winking of clitoris during oestrus. The assessment of different changes of the female genitalia were found be normal and the dimensions has been recorded on different days of estrous cycle.

128.	"Incidence of Sub-clinical Endometritis in Crossbred Cattle and its Therapeutic Management with Tinospora cordifolia"	Dr Roland R. Songate,	-do-	2022	Cytobrush technique and Low Volume Lavage (LVL) technique was equally effective for diagnosis of Sub-Cclinical Endometritis. Tinospora cordifolia could be used as adjunct therapy for the treatment of subclinical endometritis.
129.	Effect of dried aloe vera (Aloe barbadensis miller) leaf powder on quality of boar semen"	Dr Athokpam Donin Luwang	-do-	2022	The quality of boar semen was deteriorated during 48 hours of preservation with GEPS extender along with 5% and 10% of dried Aloe vera leaf powder at 17°C
130.	Efficacy of Mifepristone (Antiprogestin) for Therapeutic Management of Open Pyometra in Bitches	Dr Anurag Garg	-do-	2022	Treatment of open pyometra in bitches with Antiprogestin (mifepristone, 10 milligrams per kg orally was found to be effective therapy when used in combination with antibiotics (ceftriaxone and tazobactum) + Prostaglandin F2α s/c.

10. DEPARTMENT OF VETERINARY MEDICINE

Sl . No.	Title of the Thesis	Name of the Student	Major subject	Year of Compl etion	Out come
131.	"Therapeutic efficacy of Azadirachta indica (Neem) and Ananas comosus (Pineapple) leaves in experimental Ascridia galli infection in poultry"	Dr. Wallambok M. Lyngdoh Reg.No: CAU/08- V/08 (M)	Veterinary Medicine	2010	 The prevalence of ascariasis in poultry of Aizawl District is 5% The efficacy of herbal Anthelminthes (Neem and Pineapple) were found to be encouraging result
132.	"Studies on various canine dermatoses in Mizoram and comparative efficacy status of Ivermectin with two lacally available plants (Milletia pachycarpa and Linostomadecandrum) against mange infestations"	Dr. Benjamin Lalduhawma	Veterinary Medicine	2010	• Topical Application of 20% of ointment of <i>Millettia pachycarpa</i> and 20% ointment of <i>Linostoma decandrum</i> showed better efficacy against sarcoptic mange in pig
133.	"A Study on sub clinical mastitis of cattle in Aizawl District of Mizoram"	Dr. Malsawmtlua ngi Ralte Reg.No: CAU/10- V/09 (M)	Veterinary Medicine	2011	 Prevalence of sub clinical mastitis in and around Aizawl District was 71% Anti microbial susceptibility test should 100% susceptibility Cefoperazone and Sulbactum composition
134.	"A Study on the health status of dairy cattle based on metabolic profile test in and around Selesih, Aizawl District, Mizoram".	Dr. Karam Amarjit Singh Reg.No: CAU/12- V/09 (M)	Veterinary Medicine	2011	 Negative energy balance, lower calcium and phosphorus level occur in dairy cows during the periparturient period Management condition of the dairy farms in Aizawl District was poor and unhygenic
135.	"Clinico-Biochemical and Therapeutic Studies of Ascites in Dogs".	Dr. C. Lalnunpuia Reg.No: CAU/168- V/05 (B)	Veterinary Medicine	2012	 Ascites was found 43.33% in dogs and 1 to 2 years old dog are mostly susceptible The therapeutic regiments with furosemide tablet amino acid infusion, proteinex and dextrose 10% infusion should effective treatment of ascites in dogs
136.	"Studies on clinico-bilchemical profile of mineral deficiency status of Mithun (<i>Bos frontalis</i>) in Nagaland".	Dr. Neithono Kuotsu Reg.No: CAU/16- V/10 (M)	Veterinary Medicine	2013	 Mithuns were found to be highly deficient in cobalt followed by copper. Iron level in serum of Mithun higher than normal

137.	"Scientific Validation of Potential ITK(S) against Gastro-Intestinal Ailments with Special Reference to Diarrhoea in Farm Animals of Manipur".	Dr. Lukram Narendra Singh Reg.No: CAU/31- V/11 (M)	Veterinary Medicine	2014	• The study showed that ITK(S) can be used successfully against Gastro-Intestinal Ailments in case of livestock.
138.	"Molecular Diagnosis of Ehrlichiosis in Dogs and Its Therapeutic Management".	Dr. Isaac B. Tungnunga Reg.No: CAU/39- V/13 (M)	Veterinary Medicine	2015	 Incidence of ehrlichiosis in dogs revealed 19.40% in and around Aizawl% during 2013-14. Age wise predisposition revealed highest infection in 3-6 years age group. Crotalus Horridus 200c was found to be an effective therapeutic measure and can be use as an alternative therapy against ehrlichiosis.
139.	"Prevalence and Clinico-Haematological Studies of Haemoprotozoan Diseases in Dairy Cows".	Dr. H.C. Joane Mary Reg.No: CAU/262- V/07 (B)	Veterinary Medicine	2015	 Overall prevalence of haemoprotozoan diseases in Mizoram was recorded 18% (27/150) during 2013-14. Babesiosis was found to be the highest prevalence followed by theileriosis, anaplasmosis and mixed infection. Combination therapy of Berenil and azithromycin was found to be more effective against babesiosis. Combination therapy of Buparvaquone and oxytetracycline was found to be more effective against theleriosis.
140.	"A comparative Study on the Efficacy of Antibiotics Against Bovine Mastitis".	Dr. Miti Badu Reg.No: CAU/64- V/14 (M)	Veterinary Medicine	2016	 Prevalence of mastitis in and around Aizawl District was 72% The highest incidence was found in cows in their third lactation and 6 to 8 years age group should higher prevalence. The combination therapy of Cobactum 2.5% was found to be 100 % effective.
141.	"Evaluation of Anti-diarrheal effect of methanolic fruit pulp extract of <i>Aegle marmelos</i> (Bael) against piglet diarrhoea"	Dr. Santanu Ghorai Reg.No: CAU/53- V/15 (M)	Veterinary Medicine	2017	 Methanolic extract of fruit pulp of <i>A.marmelos</i> had antidiarrheal / anti-secretarial property. The study also showed that the

					combination therapy of loperamide (0.1mg/kg BW) and methanolic extract of fruit pulp of <i>A. Marmelos</i> .(240 mg /kg.BW) was the best treatment. • Methanolic extract of fruit pulp of <i>A. Marmelos</i> .(240 mg /kg.BW) alone also showed better efficacy than standard therapy i.e loperamide. • Methanolic extract of fruit pulp of <i>A. Marmelos</i> should be used in place of loperamide in symptomatic cure of diarrhea
142.	"Clinico-therapeutic studies of Canine Distemper in dogs of Aizawl",	Dr. Tasso Yama Reg.No: CAU/409- V/10(B)	Veterinary Medicine	2017	 The incidence of Canine distemper was 1.11% in Aizawl municipal area of Mizoram. The incidence of the canine distemper was high in young age group (0-6months) of dogs The gastrointestinal form of canine distemper was more common (30%) compared to other forms of the disease.
143.	"Ultrasonographic Evaluation of Abdominal Disease Conditions in dogs"	Dr. Rebecca Lalmuanpuii Reg.No. CAU/450- V/11(B)	Veterinary Medicine	2018	 Ultrasonography is more accurate technique in diagnosing most of the disorders of the abdominal organs in dogs like liver cirrhosis, hepatitis, ascites, cholecystitis, cystitis, cystic calculi, splenomegaly etc. Plain radiography is conclusive only limited instances like urolithiasis, hepatomegaly, etc. in manyinstances, they are complimentary to each other.
144.	"Molecular Diagnosis of Babesiosis in Dogs of Mizoram and its Therapeutic Management"	Dr. Chamniugon gliu Gonmei Reg.No. CAU/80- V/16(M)	Veterinary Medicine	2018	 Incidence of babesiosis in dogs revealed 1.25% during specified study period in and around Aizawl. Babesia gibsoni was the major causative agent of babesiosis in dogs of Mizoram. Clindamycin (@ 11mg/kg B.W I/V ly daily for 10 days) was found to be effective therapeutic

145.	"Studies on Canine Atopic	Dr.	Veterinary	2018	measures and can be used as an alternative of Diminazene aceturate against babesiosis. • The incidence of canine etopic
143.	Dermatitis in Dogs and its Therapeutic Management"	Ningthoujam Suraj Singh Reg.No. CAU/79- V/16(M)	Medicine	2010	 The incidence of cannie ctopic dermatitis was 3.27% Canine IgE and canine interleukin-31 can be used as diagnosting markers for CAD 10% <i>Tridex Procumbence</i> ointment can be used as adjunct therapy against CAD
146.	"Evaluation of Haemato-Biochemical and Oxidant Status in Dogs with Cardiac Arrhythmias"	Dr. Nirali Piyush Shah Reg.No. CAU/82- V/16(M)	Veterinary Medicine	2018	 Dogs of 12.03% were diagnosed for primary cardiac arrhythmias Congestive heart failure was the most common diagnosis along followed by dialated cardio myopathy
147.	"Endoscopic Study on Chronic Vomition in Dogs"	Dr. Lalrintluang a Reg.No.CA U/393- V/10(B)	Veterinary Medicine	2018	 Endoscopic intervention was found to be a very good diagnostic tool for ascertaining the common causes of chronic vomition in dogs Extensive rehydration therapy along with anti-emetic, antacids and other supportive therapy prove useful for amelioration of chronic vomition.
148.	"Etiolopathological Studies of Ascites in Dogs"	Dr. O. Kupmei Phom Reg.No. CAU/496- V/12(B)	Veterinary Medicine	2019	 Incidence of ascites in dogs revealed 1.91% cases in and around Aizawl during specified study period 2018-19. Liver cirrhosis, Congestive heart failure, hepatitis and multi-organ dysfunction were the major causes of ascites in dog. Imaging techniques viz. USG, ECG and Echocardiography examination were helpful for diagnosis of liver, cardiac, and other organ involvement in response to cause of ascites.
149.	"Studies on Dietary Cation Anion difference (DCAD) Concentration on Health	Dr. Arindam Bhowmik U-17-MZ-	Veterinary Medicine	2019	• Dietary Cation Anion Concentration (DCAD) concentration and incidence of

150	Status of Dairy Cows with Special Reference to Milk Fever"	01-003-M- V-062		2010	Milk Fever in pre-partum dairy cows in organized dairy cattle farms was found to be less than unorganized dairy cattle farms of West Tripura. • Anionic salt preparations (Ammonium Chloride and Calcium Sulphate @ 1:1) was found to have beneficial changes in haemato-biochemical parameters of experimental dairy cattle. • Pre-partum diet rich in anionic salt preparations (NH ₄ Cl @ 45gm and CaSO ₄ @ 45 gm, orally, mix with feeds, twice daily from 3 weeks before parturition to day of parturition) were found to be effective in preventing occurrence of Milk Fever; most common metabolic disease in dairy cows minimizing post-partum economic losses
150.	"Prevalence of Porcine Sarcoptic Mange Infectation in Tripura and Its Therapeutic Management"	Dr. Prasenjit Debnath U-17-MZ- 01-003-M- V-061	Veterinary Medicine	2019	 The Prevalence of porcine sarcoptic mange infestation in Tripura was observed as 11.81% Major etiological agent was diagnosed as Sarcoptic scabi ver suis. Poly herbal ointment was found to be satisfactory result as compared with Ivermectin.
151.	"Evaluation of Metabolic Profile and Oxidant Status in FMD Infected Cattle and Its Management with Homeopathic Medicine"	Dr. Albert Debbarma U-17-MZ- 01-003-M- V-170	Veterinary Medicine	2019	 The seroprevalence of FMD was 26% (130/500) in West dristic of Tripura during 2018-19 LPO level was significantly higher whereas SOD was significantly decreased in infected cattle. Homeopathic treatment with Merck sol 30 and Nitric acid 200@ 20 drops orally Once for 10days, Kalium iodatum 200C @ 20 drops orally twice a day for 5 days and Calendula

					mother tincture applied locally over the oral and foot lesions 2 times daily for 10days showed similar efficacy with standard therapy
152.	Prevalence of methiciilin resistant <i>Staphylococcus aureus</i> in canine dermal infection in Mizoram and its therapeutic management	Dr. Ankita Debnath	Veterinary Medicine	2021	 i. Prevalence of methicillin resistant <i>Staphylococcus aureus</i> was found to be 22% in canine dermal infection in Mizoram ii. Doxycycline showed maximum sensitivity
153.	Clinico-pathological study of immune mediated haemolytic anaemia associated with haemoparasitic infections in dogs and its therapeutic management	Dr. Elone Lucy	Veterinary Medicine	2021	 i. Immune mediated haemolytic anaemia is noticed in haemoprotozoan and rickettsial diseases in dogs ii. Immunosuppressive agents like prednisolone can be included as an adjunct therapy
154.	Therapeutic potential of N-acetylcysteine as an adjunct therapy against bovine theileriosis	Dr. Champak Deka	Veterinary Medicine	2022	 i. Oxidative stress plays a vital role in haemolytic crisis caused by bovine theileriosis ii. N-acetylcysteine as an adjunct therapy ameliorates oxidative stress and reduces severity of anaemia induced by bovine theileriosis
155.	Evaluation of anti-diarrhoeal properties of methanolic extract of <i>Pongamia glabra</i> and its therapeutic efficacy against clinical cases of piglet diarrhoea	Dr. Kaushik Poran Bordoloi	Veterinary Medicine	2022	 i. The methanolic extract of Pongamia glabra has antidiarrheal and anti-secretary properties ii. Methanolic extract of Pongamia glabra can be used as an alternative to loperamide for symptomatic cure of piglet diarrhoea
156.	Therapeutic efficacy of Lactobacillus bulgaricus, zinc glycinate and oyster mushrooms as an adjunct therapy in piglet diarrhoea	Dr. Dilip Nama	Veterinary Medicine	2022	Adjunct therapy of <i>Lactobacillus bulgaricus</i> and oyster mushrooms combination showed better result against piglet diarrhoea

11. DEPARTMENT OF VETERINARY MICROBIOLOGY

Sl	Title of Thesis	Name of the Student		Year of	Outcome			
No.	nal Snecies: Pig			Completion				
	Animal Species: Pig Category: Surveillance and monitoring of diseases and antimicrobial resistance							
157.	Studies on Prevalence of Virulence Genes of Shiga Toxigenic <i>Escherichia coli</i> (STEC) And Enteropathogenic <i>EscherichiaColi</i> (EPEC) in Piglets with and without Diarrhoea in Mizoram	Dr. Joy 2009 Lalmuanpuia Kataria		 STEC and EPEC were detected in piglets of Mizoram. Healthy pigs were found carrier of STEC and EPEC. 				
158.	Studies on Isolation, PCR Based Detection and Characterization of <i>Listeria monocytogenes</i> from Pig and Pork in Mizoram	Dr. Lalhruaitluangi Sailo	2009	in pigs of M	nocytogenes was detected in			
159.	Studies on detection and characterization of Shigatoxigenic <i>Escherichia coli</i> (STEC) and Enteropathogenic <i>Escherichia coli</i> (EPEC) associated with diarrhea in piglets and infants in Mizoram	Dr. Jubeda Begum	2011	and infants f	EPEC isolated from piglets from the same households. isolates possessed potential portance.			
160.	Studies on detection and molecular characterization of <i>Pasteurella multocida</i> associated with progressive atrophic rhinitis in pigs in Mizoram	Dr. ZomuankimaV arte	2011	from healthy Non-toxigendetected from	ant <i>P. multocida</i> recovered y pigs of Mizoram. nic <i>P. multocida</i> were om pigs with progressive nitis in Mizoram.			
161.	Seroprevalence and molecular diagnosis of classical swine fever in Mizoram	Dr. David Malsawmkima	2011	established. • The local is	solates of CSF in Mizoram racterized by molecular			
162.	Detection of classical swine fever virus infection by PCR and ELISA	Dr. Abigail R. Pachuau	2011	• Prevalence of	of CSF in pigs of Mizoram shed by ELISA and PCR			
163.	Studies on detection and characterization of Extended Spectrum β -Lactamasses (ESBLs) with special reference to $bla_{CTX-M-I}$ and bla_{TEM} genes in <i>Escherichia coli</i> , <i>Salmonella</i> spp. and <i>Klebsiella pneumoniae</i> isolated from pigs and poultry in Mizoram.	Dr. H. Lalzampuia	2012	and <i>K. pneu</i> of Mizoram. • MDR ESE Salmonella	ducing <i>E. coli</i> , <i>Salmonella monia</i> were detected in pigs BLs producing <i>E. coli</i> , and <i>K. pneumonia</i> hared by pigs and poultry of			
164.	Studies on detection and Characterization of Extended Spectrum Beta-Lactamases (ESBLS) with special reference to bla_{TEM} , bla_{SHY} , bla_{CTX-M} and bla_{CMY} genes in $Escherichia$ $coli$, $Salmonella$ spp. and $Klebsiella$ $pneumoniae$ isolated from pigs of Meghalaya and Assam	Dr. A. Lalruatdiki	2013	Escherichia Klebsiella p pigs of Meg The organis (MDR) type	ESBL genes carrying coli, Salmonella spp. and meumonia were detected in halaya and Assam. ms were multidrug resistant commons are potential zoonotic			

		1				
165.	Development of a Polyclonal Antibody Based Antigen-Capture Enzyme-Linked	Dr. G. Poulinlu	2016	• An antigen capture ELISA was developed for serodiagnosis of Group A		
	Immunosorbent Assay (ELISA) for Diagnosis			Rotavirus in piglets.		
	of Group-A Rotaviral Diarrhoea in Piglets			~ ~		
1.00	· · · · · · · · · · · · · · · · · · ·	D. Cotrolai	2017	• Validation of the test is yet to be done.		
166.	Studies on Antimicrobial Resistance and	Dr. Satyaki	2017	• Biofilm forming Escherichia coli,		
	Biofilm Producing Properties of Escherichia	Chakraborty		Salmonella spp. and		
	coli, Salmonella spp., Staphylococcus aureus			Pseudomonasaeruginosa isolated from		
	and <i>Pseudomonasaeruginosa</i> Isolated from			pigs of Mizoram.		
	Cattle, Pig and Poultry of Mizoram, India			• Organisms were positive for multiple		
				virulence, AMR and biofilm associated		
				genes.		
				• The organisms are potential zoonotic		
				pathogens.		
167.	Molecular detection of exfoliative toxin gene in	Dr. Samrat	2017	• Documentation of exfoliative toxin		
	staphylococcus spp. isolates from pigs with or	Kalai		producing Staphylococcus spp. greasy		
	without symptoms of greasy pig disease in			pig disease affected pigs.		
1.00	Mizoram Molecular detection and characterization of	Dr.	2018	- Malaurahan ahar aka di di Cara		
168.	Porcine reproductive and respiratory syndrome	Zohlimpuia	2018	• Molecular characterization of <i>Porcine</i>		
	virus in samples from pigs in Mizoram	Zommpula		reproductive and respiratory syndrome virus 2 from Mizoram revealed that		
	virus in samples from pigs in witzoram			there is transboundary transmission of		
				the disease taken place from 2013		
				onwards to Mizoram.		
169.	Transboundary transmission of bacterial and	Dr.	2019	Major bacterial pathogens including		
10).	viral pathogens through pigs in Mizoram	Lalremruata	2017	Pasteurella, Haemophillus,		
	4.1.m. banno 20.10 am o n2.1 b 120 m 14.1720 m 11.			Actinobacillus, Mycoplasmas were		
				detected in pigs illegally transported		
				from Myanmar to Mizoram.		
				• Major viral pathogens including CSF,		
				PRRS, Rotaviruses were detected in		
				pigs illegally transported from		
				Myanmar to Mizoram.		
				• Illegally transported animals carry		
				pathogens with potential transboundary		
				transmission ability.		
1	nal Species: Cattle		_			
	gory: Surveillance and monitoring of diseases a					
170.	Studies on Antimicrobial Resistance and	Dr. Satyaki	2017	• Biofilm forming Staphylococcus aureus		
	Biofilm Producing Properties of Escherichia	Chakraborty		isolated from cattle of Mizoram.		
	coli, Salmonella spp., Staphylococcus aureus			• Organisms were positive for multiple		
	and <i>Pseudomonasaeruginosa</i> Isolated from Cattle, Pig and Poultry of Mizoram, India			virulence, AMR and biofilm associated		
	Came, Fig and Foundy of Mizorani, india			genes.		
				• The organisms are potential zoonotic		
Anin	nal Species: Poultry and wild hirds			pathogens.		
	Animal Species: Poultry and wild birds Category: Surveillance and monitoring of diseases and antimicrobial resistance					
171.	Studies on detection and characterization of		2012	• ESBLs producing <i>E. coli</i> , <i>Salmonella</i>		
1/1.	Extended Spectrum β-Lactamasses (ESBLs)	Lalzampuia	_	and K. pneumonia were detected in		
	with special reference to $bla_{CTX-M-1}$ and bla_{TEM}			pigs of Mizoram.		
	genes in Escherichia coli, Salmonella spp. And			1 6		
	, 11					

	Klebsiella pneumoniae isolated from pigs and poultry in Mizoram.			• MDR ESBLs producing <i>E. coli</i> , <i>Salmonella</i> and <i>K. pneumonia</i> commonly shared by pigs and poultry of Mizoram.
172.	Molecular detection and characterization of newcastle disease virus isolated from birds in Manipur and Mizoram	Dr. Sabitri Maibam [(admission no. 2014-V- 06 (M)]	2016	 Virulent Newcastle disease virus could be isolated from diseases bird as well as from free ranged birds. Isolates were phylogenetically belonged to Genotype XIII & II of NDV.
173. 174.	Studies on Antimicrobial Resistance and Biofilm Producing Properties of <i>Escherichia coli</i> , <i>Salmonella</i> spp., <i>Staphylococcus aureus</i> and <i>Pseudomonasaeruginosa</i> Isolated from Cattle, Pig and Poultry of Mizoram, India	Dr. Satyaki Chakraborty	2017	 Biofilm forming Escherichia coli, Salmonella spp. and Pseudomonasaeruginosa isolated from poultry of Mizoram. Organisms were positive for multiple virulence, AMR and biofilm associated genes. The organisms are potential zoonotic pathogens.
175.	Isolation and identification of gut bacteria of domestic chickens and wild birds of Mizoram, vis-à-vis detection of virulence and antimicrobial resistance repertoire genes of the bacterial isolates	Dr. H. Remsangzela	2019	 The gut microbiome of wild birds of Mizoram established. Multidrug resistant gut bacteria in wild birds of Mizoram detected. Wild birds may contract the multidrug resistant bacteria through environment or the domestic animals and human being.
_	ies: Human	1 1.		
176.	Studies on detection and characterization of Extended Spectrum β-Lactamasses (ESBLs) with special reference to <i>bla_{CTX-M-I}</i> and <i>bla_{SHY}</i> genes in <i>Escherichia coli</i> , <i>Salmonella</i> spp. and <i>Klebsiella pneumoniae</i> isolated from humans in Mizoram	nd antimicrobi Dr. Iadarilin Warjri	al resistar 2012	ESBLs producing enteric bacteria were detected in human population of Mizoram. Most of the isolates were potentially multidrug resistant. The isolates could be transmitted from contaminated food and water sources.
177.	Studies on detection and characterization of Shigatoxigenic <i>Escherichia coli</i> (STEC) and Enteropathogenic <i>Escherichia coli</i> (EPEC) associated with diarrhea in piglets and infants in Mizoram	Dr. Jubeda Begum	2011	 STEC and EPEC isolated from piglets and infants from the same households. The EPEC isolates possessed potential zoonotic importance.
_	ies: NA	onoutica		
178.	Exploration of natural Immunomodulators for overcoming Herpesvirus persistence using Marek's disease vaccine virus as a model administered <i>in ovo</i> .	Dr. Malsawmd awngkimi Colney	2018	 In ovo vaccination techniques for Mareks disease in poultry was standardized. Application of plant extracts as immunomodulator improved the immunogenicity of the antigens.

179.	Isolation of <i>Betaarterivirus suid 2</i> prevalent in Mizoram and expression of gp5 gene in prokaryotic and eukaryotic systems	Dr. Fatema Akter	2020	• Recombinant immunogenic protein of <i>Betaarterivirus suid 2</i> local isolate could be purified and detected by standard antiserum.
180.	Studies on antimicrobial, antibiofilm and antiquorum sensing activities of the crude extracts of medicinal plants against <i>Escherichia coli</i> , <i>Salmonella</i> spp. and <i>Staphylococcus aureus</i>	Dr. Honeysmit a Das	2021	 Crude extracts of potential medicinal plants of Mizoram were tested for antimicrobial activities against <i>Escherichia coli</i>, <i>Salmonella</i> spp. and <i>Staphylococcus aureus</i> with encouraging result. Crude extracts of potential medicinal plants of Mizoram were tested for antibiofilm activities against <i>Escherichia coli</i> and <i>Staphylococcus aureus</i> with encouraging result. Crude extracts of potential medicinal plants of Mizoram were tested for antiquorum sensing activity against <i>Escherichia coli</i>, <i>Salmonella</i> spp. and <i>Staphylococcus aureus</i> with encouraging result.
181.	Exploration of in-ovo vaccination in ducks against duck viral enteritis and aflatoxicosis by co-administering vaccine virus, aflatoxin-ovalbumin conjugate and novel organic immunomodulators.	Dr. Raj Sekhar Sarmah	2021	 A cocktail vaccine with duck viral hepatitis virus and aflatoxin B1 developed as <i>in ovo</i> vaccine for ducks. Application of plant extracts as immunomodulator improved the duration of immunity by in vitro assays.
YE 182.	AR JAN 2020-MAY 2022 Studies on antimicrobial, antibiofilm and antiquorum sensing activities of the crude extracts of medicinal plants against <i>Escherichia coli</i> , <i>Salmonella</i> spp. and <i>Staphylococcus aureus</i>	Dr. Honeysmit a Das	2021	 Crude extracts of potential medicinal plants of Mizoram were tested for antimicrobial activities against <i>Escherichia coli</i>, <i>Salmonella</i> spp. and <i>Staphylococcus aureus</i> with encouraging result. Crude extracts of potential medicinal plants of Mizoram were tested for antibiofilm activities against <i>Escherichia coli</i> and <i>Staphylococcus aureus</i> with encouraging result. Crude extracts of potential medicinal plants of Mizoram were tested for antiquorum sensing activity against <i>Escherichia coli</i>, <i>Salmonella</i> spp. and <i>Staphylococcus aureus</i> with encouraging result.
183.	Exploration of <i>in ovo</i> vaccination in ducks against duck viral enteritis and aflatoxicosis by co-administering vaccine virus, aflatoxin-ovalbumin	Dr. Raj Sekhar Sarmah	2021	encouraging result. A cocktail vaccine with duck viral hepatitis virus and aflatoxin B1 developed as in ovo vaccine for

	conjugate and novel organic immunomodulators.			ducks. • Application of plant extracts as immunomodulator improved the duration of immunity by in vitro assays.
184.	Prokaryotic Expression of Recombinant Capsid Proteins of Foot and Mouth Disease Virus and Exploration of its Immunogenic Potentials in Pigs	Dr. Satyabrat Dutta	2021	Development of virus like particle as an alternative candidate for development of vaccine against FMD virus.
185.	Development of polymerase spiral reaction (PSR) for specific detection of <i>Actinobacilluspleuropneumoniae</i> and application of the technique for diagnosis of contagious porcine pleuropneumonia	Dr. Richa Sarkar	2021	 First ever development of isothermal PSR for detection of A. pleuropneumoniae. Development of a very rapid, sensitive, specific and cost effective diagnostic technology for field level diagnosis of the disease.

12. DEPARTMENT OF VETERINARY SURGERY & RADIOLOGY

Sl. No.	Title of the thesis	Name of the student	Major subject	Year of comple tion	Outcome
		DISC	CIPLINE: V	eterinary S	Surgery and Radiology
186.	Management of wounds and wounds infection in veterinary patients	Dr. Thangzading a	Veterinary Surgery & Radiology	2008	The number of wound cases is significantly more in canine than other species of animals in Aizawl city. Younger populations of animals i.e. less than 1 year of age are more prone to injury. Accidents are the most common cause of injury in all the species of animals. The methanolic extracts of <i>Mikania micrantha</i> and <i>Eupatorium odoratum</i> leaves, when used as ointment in paraffin base helped in wound healing by controlling or preventing inflammation, excessive exudation and infection. The results also suggest that the two herbs have antimicrobial properties.
187.	Pre-emptive use of analgesics in anaesthesia and pain management in pigs. Comparative evaluation of	Dr. Kalpana Deb Barma Dr. V. Lalzawmlian	Veterinary Surgery & Radiology Veterinary Surgery &	2009	Xylazine better suited as pre-emptive analgesic in comparison to diazepam and midazolam to ketamine induced anaesthesia in pigs, when the drug was used intravenously. The intravenous xylazine-ketamine combinations can be used for general anaesthesia and pain management in clinical cases in pigs. Diazepam and midazolam were compatible as preanaesthetic to xylazine-ketamine and greatly
	diazepam and midazolam as	а	Radiology		enhanced the value of ketamine for balanced anaesthesia. Diazepam better suited for pre-anaesthetic

189.	preanaesthetic to xylazine and ketamine for balance anaesthesia in pigs Evaluation of lignocaine, bupivacaine, ketamine and bupivacaine- ketamine combination of	Dr. Vanlalchhan dama	Veterinary Surgery & Radiology	2013	as compared to midazolam with xylazine-ketamine for balanced anaesthesia in pigs. Administration of diazepam-xylazine-ketamine provides the best balanced anaesthesia in pig. Lignocaine, bupivacaine, ketamine and bupivacaine-ketamine can be used as epidural anaesthesia in pigs with minimal physiological, haematological and biochemical alterations. Regional analgesia in pigs can be obtained with epidural bupivacaine @0.8mg/kg, Ketamine @8mg/kg and bupivacaine-ketamine combination @0.4+4mg/kg. Ketamine have synergetic
	epidural anaesthesia in pigs.				effect with bupivacaine when used epidurally and therefore, can be used in combination for surgical operations involving caudal to the umbilicus in pigs.
190.	Evaluation of propofol and its combination with preanaesthetics for total intravenous anaesthesia (TIVA) in cat.	Dr. Ashimi Das	Veterinary Surgery &Radiology	2013	Atropine sulphate, butorphanol tartrate and propofol combination provided longer duration of surgical anaesthesia and analgesia without any deleterious effect on the vital organs in cats. The anaesthetic combination may be recommended as safe and effective anaesthetic protocol for major surgical/ longer surgical procedures in cat.
191.	Studies of incidence and surgical management of canine neoplasm	Dr. John Bezalaisa Khithie	Veterinary Surgery & Radiology	2014	The incidence of neoplasm in dog was recorded in 76.47%. Highest incidence was observed in the age group of 6-9 years (41.02%), followed by 10-12 years (28.20%), 4-6 years (20.51) and least in the age groups of 0-3 years and 13-15 years which is 5.12%. The incidence in female was 64.1% and in male 35.9%. Highest incidence was recorded in mixed breeds (82.05%), followed by Alsatian (10.25%), Mongrel (5.12%) and least in Boxer (5.26%). The frequency of occurrence of canine tumour was highest in skin and subcuticle (13), mammary tumour (11), oral papilloma (11) and least in vaginal tumor (4). The highest incidence was recorded in papilloma (30.70%), lipomas (23.07%), fibroma (10.25%), adenoma (10.25%), Squamous cell carcinoma (7.69) and 2.56% in basal cell tumour, TVT, fibroma and fibrosarcoma.
192.	Wound healing potential of <i>Bidens pilosa</i> and <i>Cassia tora</i> leaves in rabbits.	Dr. Daniel Kakki	Veterinary Surgery & Radiology	2014	The methanolic extract of <i>Cassia tora</i> initiated faster wound healing than Povidone iodine and <i>Bidens pilosa</i> without any complications. Therefore, methanolic extract of Cassia <i>tora</i> can be a good alternative medicine for stimulating and improvement of wound healing in animals.
193.	Ventral hernia in pigs with special	Dr. Nayan Bagawati	Veterinary Surgery & Radiology	2015	The incidence rate of ventral hernia in pig in and around Aizawl district of Mizoram was found to be 5.05%. Higher incidence of ventral hernia was observed in

	reference to				female pigs. Age wise, the incidence rate was higher in
	their surgical management				the age group of 2-4 months. Post operative complication was found to be a responsible for high
	using				incidence of ventral hernia in female and in the age
	herniorrhaphy				group of 2-4 months. Hernioplasty technique with the
	and				use of prosthetic mesh (polypropylene mesh) was found
	hernioplasty				to be useful in large hernial ring size of the ventral
	techniques				hernia and reduce the recurrence rate. However, cost of the polypropylene mesh hernioplasty was found to be
					higher for repair of ventral hernia in pig.
104	Studies on	Dr. Andrew	Veterinary	2016	Incidence of canine bone fracture revealed 8.97 %,
194.	incidence and	Lalremruata	Surgery &	2010	highest incidence was recorded in non-descript dogs,
	surgical		Radiology		age group below 1 year and male dogs were
	management of				predominantly affected. The most common etiological
	canine bone				factor was the road traffic accident and fracture of
	fracture				femur bone had the highest incidence. Following
					immobilization of fractured bone moderate weight
					bearing was observed from 15 days and complete weight bearing without pain and bridging of fractured
					gap was observed from 45 days.
195.	Acepromazine	Dr. L. H.	Veterinary	2016	Acepromazine and midazolam along with butorphanol
	and midazolam	Lalrosanga	Surgery &		were found to be effective as pre-anaesthetic to
	with		Radiology		propofol anaesthesia in pig. Both the combinations of
	butorphanol as				anaesthetic were found to be suitable for balanced
	preanaesthetics to propofol				anaesthesia in pigs. Recovery was smoother and shorter with midazolam butorphanol propofol combination.
	anaesthesia in				with initiazolam outorphanor proporor comomation.
	pigs				
196.	Evaluation of	Dr. Tage	Veterinary	2016	Acepromazine and midazolam were found to be safe
	acepromazine	Rina	Surgery &		and effective as pre-anaesthetic to ketamine anaesthesia
	and midazolam as		Radiology		in yak. The clinicophysiological, cardiopulmonary and haematobiochemical parameters remained within the
	preanaesthetics				physiological limit with both the combinations.
	to ketamine in				Midazolam and ketamine combination produced shorter
	yak				duration with shorter and smooth recovery.
					Acepromazine and ketamine combination produced
					longer duration of anaesthesia with moderate analgesia
197.	Continuous rate	Dr. Mekha	Veterinary	2017	and longer recovery time. Combination of dexmedetomidine Continuous Rate
19/.	infusion (cri) of	Chandran	Surgery &	201/	Infusion (CRI) with isoflurane provided a practical and
	dexmedetomidi		Radiology		effective balanced anaesthesia in canines. Based on
	ne with		23		haemodynamic parameters and recovery characteristics,
	isoflurane in				isoflurane with dexmedetomidine CRI @ 1µg/kg/hr and
	dexmedetomidi				CRI @ 1.5 µg/kg/hr were ideal balanced anaesthetic
	ne-butorphanol				regime in canines for prolonged and painful surgical
	premedicated dogs				procedures. Higher anaesthetic depth was observed in both the dexmedetomidine CRI groups.
198.	Risperidone-	Dr. Meme	Veterinary	2017	Risperidone with butorphanol was found to be an
	butorphanol as	Cheda	Surgery &		effective premedicant to propofol and isoflurane
	premedicants to		Radiology		anaesthesia in dogs. Risperidone reduces total amount of

	propofol and isoflurane anaesthesia in dogs.				anesthetic drug for both induction and maintenance. Aggressive dogs were smoothly handled after risperidone premedication, will be a suitable drug for minor non invasive procedures in aggressive dogs. Risperidone along with butorphanol as premedicant to propofol and isoflurane anesthesia is a satisfactory anaesthetic regimen for major surgical procedure like laparotomy in dogs.
199.	Intralesional application of bone marrow derived mononuclear cells (BMMNCs) embedded with hydroxyapatite (HA) scaffold in canine long bone fracture management.	Dr. Nengneikim Baite	Veterinary Surgery & Radiology	2018	Good functional recovery of the fracture site was observed with bone marrow derived mononuclear cells (BMMNCs) loaded into hydroxyapatite. Radiographically, faster callus formation and fractured gap elimination was recorded with bone marrow derived mononuclear cells (BMMNCs) loaded into hydroxyapatite. Functional outcome was recorded excellent in the fractured bone where bone marrow derived mononuclear cells (BMMNCs) loaded into hydroxyapatite were applied.
200.	Comparison of ovariectomy by laparoscopic and conventional open methods in dogs	Dr Sherin Shah S	Veterinary Surgery & Radiology	2018	Both laparoscopic and conventional open ovariectomy could be implemented effectively for elective sterilization in dogs. Laparoscopic ovariectomy was observed with less pain, stress and post-operative complications as compared to conventional methods.
201.	Diagnosis and surgical management of pyometra in bitches	Dr. Michael Lalhmangai hzuala	Veterinary Surgery & Radiology	2019	The radiographic evaluation supported with physical and haemato-biochemical parameters were important tool for diagnosis of closed pyometra in canine. Ultrasonographic evaluation and Laparoscopic exploration supported with physical and haemato-biochemical parameters were prefer diagnostic aid in both closed and open pyometra. Both mid ventral and left flank approach of panhysterectomy could be implemented effectively for surgical treatment of pyometra in bitches. Mid ventral approach of panhysterectomy were observed preferable approach over Left flank approach.
202.	Comparison of right flank and caudal midline approaches for ovariectomy in gilts.	Dr. Analisha Debbarma	Veterinary Surgery & Radiology	2019	No clinical and haemato-biochemical alterations were observed in gilts undergoing conventional open ovariectomy (COVE) through caudal midline and right flank approach. Therefore, both right flank and caudal midline approaches could be implemented effectively for ovariectomy in gilts. Right flank approach for ovariectomy was found to be better in terms of operative timing, incisional length, pain, healing and ease of post-operative management over the caudal midline approach.

203.	Contrast enhanced ultrasonography (CEUS) for diagnosing urinary system disorders in	Dr. Nirmali Sarma.	Veterinary Surgery & Radiology	2019	Survey radiography and retrograde contrast radiography was indicative for lower urinary tract disorders in canine. Grey-scale ultrasound was applicable for upper urinary tract and urinary bladder and contrast enhanced ultrasonography was indicative for kidney disorders. The renal functional status can solely be obtained using contrast enhanced ultrasonography.
204.	Intraperitoneal Application of Honey and Pectin-Honey Hydrogel (phhs) for Preventing Postoperative Peritoneal Adhesion in Rabbits	Dr. Chang L	Veterinary Surgery & Radiology	2019	Honey and pectin-honey hydrogels (PHHs) were found to reduce the incidence of intraperitoneal adhesions in rabbits. Pectin-honey hydrogels (PHHs) was found to be more effective than honey in preventing the intraperitoneal adhesions.
205.	Evaluation of propofol, ketofol and etomidate as induction agent in dogs premedicated with glycopyrrolate and maintained with isoflurane anaesthesia.	Dr. Rahul Paul	Veterinary Surgery & Radiology	2019	Ketofol is better induction agent than propofol and etomidate. Ketofol was better induction agent in glycopyrrolate premedicated dogs maintained under isoflurane anaesthesia.
206.	Pre-emptive analgesia with tramadol, pentazocine lactate and meloxicam in pain management of canine ovariohysterect omy	Dr. Chaithra S N	Veterinary Surgery & Radiology	2020	Tramadol, pentazocine lactate and meloxicam caused minimal alterations in physiological and haematological parameters. Tramadol was found to be more effective as pre-emptive analgesic than pentazocine lactate and meloxicam in pain management of canine ovariohysterectomy.
207.	Total intravenous anaesthesia (TIVA) with propofol and ketofol in glycopyrrolate and	Dr. Thangjam Reena Devi	Veterinary Surgery & Radiology	2020	Ketofol produced better total intravenous anaesthesia (TIVA) than propofol in pigs premedicated with glycopyrrolate and dexmedetomidine for performing surgical procedures in pig.

	dexmedetomidi				
	ne				
	premedicated				
	pigs				
208.	Lumbosacral	Dr.	Veterinary	2021	Ultrasound guided myelography significantly reduces
	Myelography	Champak	Surgery &		the time required for subarachnoid puncture and causes
	with or without	Jyoti Das	Radiology		less tissue trauma than conventional technique.
	Ultrasound-				Physiotherapy is an effective treatment in acute and sub
	guidance to				acute spinal cord injuries rather than in chronic cases.
	detect Spinal				dedic spinal cord injuries faction than in cinomic cases.
	Cord				
	Abnormalities				
	in Canines and				
	their				
	Management				
	with Special				
	Reference to				
	Physiotherapy.				
209.	Epidural	Dr. H.	Veterinary	2021	Epidural injection of dexmedetomidine,
	Analgesia using	Zorinpuii	Surgery &		dexmedetomidine-ropivacaine and dexmedetomidine-
	Dexmedetomidi		Radiology		lidocaine did not produced clinico-physiological and
	ne with or				haematological changes in dogs undergoing elective
	without				ovariohysterectomy. On the basis of analgesia, motor
	Lidocaine and				blockade, anal sphincter relaxation and recovery time,
	Ropivacaine for				dexmedetomidine-ropivacaine produced better epidural
	elective				analgesia than dexmedetomidine alone and
	Ovariohysterect				dexmedetomidine-lidocaine for elective
	omy in Dogs.				ovariohysterectomy in canine.
210.	Lumbosacral	Dr. Champak	Veterinary	2021	Ultrasound guided myelography significantly reduces
210.	Myelography	Jyoti Das	Surgery and	2021	the time required for subarachnoid puncture and causes
	with or without	Jyou Das	Radiology		less tissue trauma than conventional technique.
	Ultrasound-		Radiology		Physiotherapy is an effective treatment in acute and sub-
	Guidance to				acute spinal cord injuries rather than in chronic cases.
	Detect Spinal				
	Cord				
	Abnormalities				
	in Canines and				
	Their				
	Management				
	with Special				
	Reference to				
	Physiotherapy				
211.	Epidural	Dr. H.	Veterinary	2021	Epidural injection of dexmedetomidine,
	Analgesia using	Zorinpuii	Surgery and		dexmedetomidine-ropivacaine and dexmedetomidine-
	Dexmedetomidi	_	Radiology		lidocaine did not produce clinico-physiological and
	ne with or				haematological changes in dogs undergo elective
	without				ovariohysterectomy. On the basis of analgesia, motor
	Lidocaine and				blockade, anal sphincter relaxation and recovery time,
	Ropivacaine for				dexmedetomidine-ropivacaine produced better epidural
	Elective				analgesia than dexmedetomidine alone and
	Licetive	j .			anargeora man deamedetonnume arone and

	Ovariohysterect omy in Dogs				dexmedetomidine-lidocaine for elective ovariohysterectomy in dogs.
212.	Comparative study of Midazolam, Dexmedetomidi ne and Butorphanol along with Ketamine Hydrochloride in Cats	Dr. Debajyoti Pal	Veterinary Surgery and Radiology	2021	Ketamine-midazolam showed better quality of induction and recovery, but induction time was more and perioperative analgesia was minimal in compared to ketamine-dexmedetomidine and ketamine-dexmedetomidine-butorphanol. Ketamine-dexmedetomidine showed shorter induction time but longer duration of recumbency and recovery time as compared to ketamine-midazolam and ketamine-dexmedetomidine - butorphanol. Ketamine-dexmedetomidine - butorphanol showed shorter induction and recovery time; peri- operative and post-operative analgesia was adequate upto 1 hour than group ketamine-midazolam and ketamine-dexmedetomidine. Cardiopulmonary, haematological and bio-chemical values fluctuated within physiological range in all the three groups during the study period. Considering all aspects, combination of ketamine- dexmedetomidine-butorphanol showed better induction time; perioperative and post- operative analgesia than the other combinations.
213.	Analgesic effect of Intraperitoneal Ropivacaine and Dexmedetomidi ne in Pigs.	Dr. Gokul Raj S.	Veterinary Surgery and Radiology	2021	Enhanced intraoperative and postoperative analgesia was observed following intraperitoneal infusion of ropivacaine and ropivacaine-dexmedetomidine combination in pigs. Clinical, cardio-respiratory and haemato-biochemical changes were within the physiological limit after intraperitoneal administration of the drugs. Ropivacaine-dexmedetomidine combination provided better postoperative analgesia than ropivacaine. However, ropivacaine-dexmedetomidine combination prolonged the recovery time.
214.	Evaluation of Wound Healing with Colocasia esculenta and Dillenia indica in Experimental Animal and its Therapeutic trial in Clinical Cases of Dog.	Dr. Palash Jyoti Sonowal	Veterinary Surgery and Radiology	2021	Herbal formulations of methanolic extract of Colocasia esculenta and Dillenia indica showed varying degrees of wound healing potential. Combination of 5% Colocasia esculenta and 5% Dillenia indica ointment was found to be almost similar effect with 5% Povidone iodine for wound healing. Combination of 5% Colocasia esculenta and 5% Dillenia indica ointment can be recommended for treatment of wounds. Combination ointment of 5% Colocasia esculenta and 5% Dillenia indica may be good alternative medicine for stimulating and improvement of wound healing.
215.	Analgesic Effects of Intraperitoneal Bupivacaine and Dexmedetomidi	Dr. Saurav Debnath	Veterinary Surgery and Radiology	2021	Intraperitoneal bupivacaine and bupivacaine-dexmedetomidine improved the intra-operative and post-operative analgesia in dogs during laparotomy. The clinical, cardio-respiratory and haemato-biochemical parameters remained within the physiological limit following intraperitoneal administration of bupivacaine

ne in Dogs.		and bupivacaine-dexmedetomidine in dogs. Better post-
		operative analgesia was provided by bupivacaine-
		dexmedetomidine combination.

13. DEPARTMENT OF ANIMAL GENETICS & BREEDING

M.V.	Sc.										
Sl.	Title of the thesis	Nan	ne of the		Major	Y	ear of	Outcome (2-3 lines)			
No.		st	udent		subject	con	npletion				
	1. POULTRY										
	DISCIPLINE: Animal Genetics & Breeding										
	SSIFICATION/CATE						1				
216.	2 1	Kshetrir	-		mal	2013		cal chicken of Manipur were of medium			
	characterization of	Mahesh	Singh		netics &			ds with mixed plumage colour. They are			
	local chicken of			Bre	eding			gg producing type, with good mothering			
	Manipur in its home tract						ability.				
217.	Phenotypic	C. Lalhl	impuia	Λni	mal	2020	They a	re the small size birds with an average			
217.	characterisation of	C. Laiiii	Шрига		netics &	2020		weight of 1589.1 ± 312.2 g. The average			
	local chicken of				eding			size, annual egg production, laying cycle			
	Mizoram in its			Die	camg			erage egg set were 4.14 ± 0.09 , $44.65 \pm$			
	home tract							$4 - 5$ months and 10.29 ± 0.13 ,			
							respecti	ively.			
CLAS	SSIFICATION/CATE	GORY: Id	dentification	on of	genes						
218.	Polymorphism of ger		Princelin	ıa	Animal	202	0 The	result revealed the presence of genetic			
	associated with Ecor		Bora			s		ability in the genes viz., NPY, IGF-1,			
	Traits in Native Chic			&				L, MTNR1C and Mx genes associated			
	'ZOAR' (Gallus gall		Breeding		g		n production traits suggesting the				
	domesticus) of Mizor	ram				possibility of genetic selection f					
2 D:-							proc	duction performance			
2. Pig		tion 6 De									
	IPLINE: Animal Gene SSIFICATION/CATE			ahar	o otorizati	on					
219.		Andrew			acterizati Animal	201	2 Th	ney predominantly has a compact and			
219.	characterization of	Lalremr			Genetics	201		nall body sized, convex head, short erect			
	Mizo Desi	Lancini	uata		Genetics &			rs pointed upward, short and cylindrical			
	(Zovawk) pig in its				& Breeding			out, long bristles along the midline, but			
	home tract in							iform on body, drooping rumps, short			
	Mizoram							gs, long and straight tail, pot-bellied and			
								ayback backline in adult, but straight			
								lly and backline in young.			
220.	Morphological	Lisham	<u> </u>		Animal	201	6 Cr	ossbred pigs were significantly superior			
	characterization of Anandakumar			Genetics		in	their body weights and body				
	indigenous	Singh			&			easurement traits in comparison to			
	(Zovawk) and its				Breeding			ovawk pigs.			
	crosses with Large										
	White Yorkshire										
	under organised farm condition										
	rath condition	<u> </u>									

3. Cat	ttle				
	IPLINE: Animal Gene	etics & Breeding			
	SSIFICATION/CATE		olecular charac	terization	
221.		Warngam Anal	Animal Genetics & Breeding	2015	The local cattle of Mizoram 'Zobawng' are small types of cattle with predominantly mixed colour (brown/dark brown). They are poor milk producer, mainly maintained for milk purpose.
222.	Phenotypic characterization of local cattle (<i>Bos indicus</i>) of Tripura, India	Surita Majumder	Animal Genetics & Breeding	2020	They are small sized type of cattle with predominantly brown coat colour. The average ages at first calving, milk yield per day, peak yield, lactation length, dry period and gestation period were 43.00±5.64 months, 1.40±0.15 litre, 2.01±0.52 litre, 220±20.81 days, 90±10.13 days and 280.01±5.26 days, respectively.
223.	Genetic characterization of native cattle of Manipur, Nagaland and Assam using DNA microsatellite markers	Timothy Lalmalsawma	Animal Genetics & Breeding	2017	The native cattle of Manipur and Assam were genetically more closer than native cattle of Nagaland.
224.	Genetic characterization of Meghalaya, Mizoram and Assam indigenous cattle using DNA microsatellite markers	Rebecca Lalkhawngaihsangi	Animal Genetics & Breeding	2017	The native cattle of Meghalaya and Assam were genetically more closer probably due to the mixing of genes when compared with that of native cattle of Mizoram.
CLAS	SSIFICATION/CATE	GORY: Identification of	of genes	1	1
225.	DNA polymorphism in milk protein genes in local cattle of North-east India	Nakambam Manoranjan Singh	Animal Genetics & Breeding	2013	Frequency of kappa casein allele A (0.661) was higher than the B allele (0.339) in the native cattle of Assam, Manipur and Mizoram. The β –casein allele A (0.983) was predominant in the studied population.
226.	Genetic polymorphism of Toll like receptor 4 gene in indigenous cattle of North east India vis-a-vis crossbred cattle	Chukham Gohain	Animal Genetics & Breeding	2018	Genetic polymorphism of Toll-Like Receptor (TLR-4) genes associated with disease resistance were observed in the local cattle of Assam, Manipur and Mizoram.
227.	Polymorphism of genes associated	Lalhruaitluangi	Animal Genetics &	2018	The local cattle of 6 north east states viz. Assam, Manipur, Meghalaya,

228.	with production traits in local cattle of North east India vis-a-vis crossbred cattle Polymorphism of genes associated with reproductive traits in local cattle of North East India vis-à-vis crossbred cattle	Keyolenu Yore	Animal Genetics & Breeding	2018	Mizoram, Nagaland and Tripura showed presence of alleles of genes (PRL, PIT-1 and STAT-1) associated with milk production and quality traits. In bovine growth hormone gene, the frequency of A allele was predominant among indigenous cattle of NER. On the contrary, the frequency of T allele was predominant in crossbred cattle.
CI A		CODY CI	6 1 .:	C	
229.	Regression tree analysis on lactation milk yield and forecasting of milk production in crossbred cows	GORY: Characterization Rohit Sharma	Animal Genetics & Breeding	2020	The results showed that lactation length (LL) as compared to lactation order (LO) and age of the animal (Age)affects significantly (p<0.05) to the milk yield.
4. Bu	ffalo				
	IPLINE: Animal Gene				
-		GORY: Identification		2010	
230.	Characterization of Toll-like receptor-4 (TLR-4) gene in Swamp buffalo of Manipur (<i>Bubalus</i> <i>bubalis</i>) of Manipur	Kaiho Kaisa	Animal Genetics & Breeding	2019	The study revealed presence of genetic polymorphism in Exon 3.5 of Toll-Like Receptor (TLR-4) gene associated with disease resistance in Swamp buffalo of Manipur.
231.	Genetic polymorphisms of reproductive and productive genes in swamp buffalo (Bubalusbubalis) of Assam and Manipur, India	Arindom Bora	Animal Genetics & Breeding	2020	Swamp buffalo of Assam and Manipur showed genetic polymorphisms in Fatty Acid Syntethase (FASN) and Melatonin receptor 1 A genes associated with milk quality and reproductive traits, respectively.
YEAI	R JAN 2020- MAY 20	22	l		
232.	Effect of Estrogen Receptor Gene on Reproductive Performance in native pig 'Zovawk' of Mizoram and Marge White Yorkshire Influence of growth	Dr. Lishi Jernya Dr. Ayesha	Animal Genetics & Breeding Animal	2022	The genotype AB for ESR gene showed positive effects on litter size at birth and at weaning in Native pig 'Zovawk". Whereas, AA genotype was found to be superior to other genotypes on these traits in Large White Yorkshire pigs. The growth hormone gene (GH1)

	hormone gene on	Chakma	Genetics &		locus) was found to be polymorphic in
	growth		Breeding		both Zovawk and Large White
	performance of				Yorkshire pigs In both the breeds,
	Zovawk and Large				the genotypes AB and BB showed
	White Yorkshire				positive associations with superior
	Pigs				body weights.
234.	Prediction of egg	Dr. Arjun Allapat	Animal	2021	The shell weight (SI) is the most
	weight from Egg		Genetics &		influential predictor variable in the
	quality		Breeding		prediction of egg weight (EW) from
	characteristics by				the used set of predictors in White
	using various Data				Leghorn, BPR Naadan breeds
	mining algorithms				datasets.
	for different breeds				
	of Poultry				

14. DEPARTMENT OF VETERINARY PUBLIC HEALTH & EPIDEMIOLOGY

			M.V.S	c.	
Sl. No.	Title of the thesis	Name of the student	Major subject	Year of completion	Outcome (2-3 lines)
235.	Studies on prevalence of virulence genes of Shiga toxigenic <i>E. coli</i> (STEC) and enteropathogenic <i>E. coli</i> (EPEC) in piglets with and without diarrhoea in Mizoram.	Joy Lalmua npuia Kataria	Veterinary Public Health	2009	Out of 254 isolates of <i>E.coli</i> from piglets (0-3 months) with or without diarrhoea, 51 carried atleast one virulence gene(s) for <i>stx1</i> , <i>stx2</i> , <i>eae</i> A and <i>hly</i> A (STEC and EPEC). <i>saa</i> gene were also detected which was the first report from the country. A sizeable number of STEC and EPEC strains exhibited the resistance to more than one antimicrobial agents.
236.	Studies on isolation, PCR based detection and characterization of <i>Listeria monocytogenes</i> from pig and pork in Mizoram	tluangi Sailo	Veterinary Public Health	2009	Listeria monocytogenes was detected in 4% faecal samples from pig by PCR and they belonged to serovar ½ a as detected by multiplex PCR. Majority of the strains were multi-drug resistant.
237.	Studies on <i>Bacillus cereus</i> isolated from milk and meat based fast food in Mizoram and Molecular detection of its virulence genes	H. Lalruatf ela	Veterinary Public Health	2016	B. cereus was detectedin24.87 % food samples comprising 17.80 % from milk based and 28.78 % from meat based fast food. The mean total viable count was 4.80 ± 0.2 (log ₁₀) cfu/g from milk and 4.84 ± 0.02 (log ₁₀) cfu/g from meat based food The mean presumptive B. cereus from milk and meat based food was 4.43 ± 0.2 (log ₁₀) cfu/g). Biotype 3 and biotype 7 were the most prevalent from meat and milk based isolates. The nheB andhblA gene, were detected in the B. cereus isolates. The B. cerus were sensitive to vancomycin, ciprofloxacin , gentamicin and

					anythromyoin and highly registers to
					erythromycin and highly resistant to ampicillin, amoxicillin and penicillin-G.
238.	Bacteriological quality and molecular detection of virulence genes of <i>Escherichia coli</i> isolated from milk and meat based fast food in Mizoram	Laltlan mawii Hnamte	Veterinary Public Health	2016	Bacteriological analysis of milk and meat based food products showed the overall Total Viable Count of 4.82±0.01 log10 cfu/g and Coliform count of 4.57±0.01 log10 cfu/g. <i>E. coli</i> was detected in 22.43% from milk and meat based fast food. Nine different serotypes of <i>E. coli</i> were detected. The isolates were most resistant to cefazolin and most sensitive to imipenem. The <i>stx</i> ₂ and <i>stx</i> ₁ could be detected in 4.34% <i>E. coli</i> strains and <i>eaeA</i> in 2.17% of the isolates.
239.	Studies on Bacteriological quality and PCR based detection of pathogenic Escherichia coli from retail meat in Mizoram	Mujesh Debbar ma	Veterinary Public Health	2016	Beef (62.22%) and chicken meat (56.67%) samples from the retail markets of Mizoram were bacteriologically contaminated and had unacceptable level of TVC and ECC. Over all, high prevalence of <i>E. coli</i> was recorded in beef (83.33%) and chicken meat (80.00%). The highest recorded <i>E. coli</i> serotypes were O118 in beef (13.33%) and O8 in chicken meat (13.89%). Serotype O121 from chicken meat and O26 from both beef and chicken meat. All the <i>E. coli</i> strains were found to be 100% sensitive to imipenem and highest resistant to amoxicillin with multi drug resistant strains. The potentially pathogenic STEC and ETEC strains were detected in beef (8.00% and 12.00%) and chicken meat (6.94% and 26. 38%) samples.
240.	Assessment of bacteriological quality of water in and around Aizawl, Mizoram	Danima Ering	Veterinary Public Health &Epidemio logy	2016	A total of 153 samples were found positive for coliform test from160 water samples from four different water sources (natural, meat market, farm and household water) in and around Aizawl. The highest coliform (100%) was found from meat market water and the lowest count (17.50%) in household water. A total of 89 isolates of <i>E. coli</i> and 8 isolates of <i>Salmonella</i> were isolated from water. The virulence genes <i>stx1</i> (1) and <i>LTA</i> (1) from natural water and meat market and <i>ST1</i> (2 each) from meat market water and farm water were detected .None of the isolates were positive for <i>stx</i> ₂ . Highest resistance and sensitivity was shown against penicillin (100%) and chloramphenicol (100%).
241.	Bacteriological quality of raw pork from Aizawl and Imphal	Malay	Veterinary Public	2017	Bacteriological quality of raw pork from Aizawl and Imphal showed mean TVC, CC

	with special reference to molecular characterization of <i>Salmonella</i> serovar.	Das	Health &Epidemio logy		and FSC of 5.9985 ± .0254 log ₁₀ cfu/g, 5.2727 ± .0707 log ₁₀ cfu/g and 2.7794 ± .1219 log ₁₀ cfu/g. The overall <i>Salmonella</i> serovars were detected as 2.5%. <i>Salmonella</i> enterica serovar Virchow was recorded as predominant serotype (80%). The virulence genes <i>inv</i> A and <i>stn</i> genes showed 100% presence. Ofloxacin, norfloxacin, ciprofloxacin, imipenem and amikacin, reported to be 100% sensitive and highest resistant to ceftriaxone (80%).
242.	Role of pet dog in transmission of gastrointestinal zoonotic parasites with special reference to Giardiosis in Manipur.	Th.Leen a Roy	Veterinary Public Health &Epidemio logy	2017	Different gastro-intestinal zoonotic parasites (49.00% and 40%) were detected in pet dogs and human, respectievely from Manipur. <i>Toxocara sp.</i> was the most predominant nematode of dog faecal samples at 39.73%, whereas, in humans, <i>Ascaris sp.</i> was the most commonly found nematode at 43.33%. Molecular detection of giardiosis in human was reported.
243.	Epidemiological study of Cryptosporidium in Cattle and Human of Mizoram and Tripura	Prasenjit Das	Veterinary Public Health &Epidemio logy	2017	The overall prevalence rates of <i>Cryptosporidium</i> were 13 percent and 16 percent in cattle and 5 percent and 7 percent in human from Aizawl and West Tripura district, respectively by detection of <i>18S S RNA</i> gene The PCR- RFLP revealed <i>C. parvum</i> genotype II in cattle and genotype I and genotype II in human.
244.	Studies on occurrence and molecular characterization of <i>Listeria monocytogenes</i> from faeces, milk and milk products of cattle from Mizoram and Tripura, India.	Papia Biswa	Veterinary Public Health &Epidemio logy	2018	A total of 400 samples (cattle faeces, raw milk and milk products) i.e. 200 samples each from Aizawl district (Mizoram) and West Tripura district (Tripura). The overall prevalence of 7.50 percent. <i>L. monocytogenes</i> was detected by PCR from cattle faeces, raw milk and milk products in Aizawl district (Mizoram) and West Tripura district (Tripura). The strains were positive for <i>actA</i> , <i>iap</i> , <i>inlA</i> , <i>hlyA</i> , <i>plcA</i> and <i>prfA</i> gene,andbelonged to the serogroup IV (4b, 4d and 4e serotypes) and I. The sequence analysis of species specific <i>16Sr-RNA</i> gene of <i>Listeria monocytogenes</i> revealed 99.80-100 percent and 99.70-99.90 percent homology with <i>L. monocytogenes</i> reference sequences of India and China. The <i>L. monocytogenes</i> strains were 100 percent sensitive to Penicillin, Ampicillin, Oxacillin, Cefotaxime/Clavulanic acid, Ciprofloxacin, Tetracycline and Trimethoprim/Sulphamethoxazole and highest resistant to Erythromycin.

245.	Studies on occurrence and molecular detection of Salmonella from chicken sources of Mizoram, India.	H.Vanla lhruaii	Veterinary Public Health &Epidemio logy	2019	A total of 50 Salmonella strains were presumptively isolated by conventional bacteriological methods from chicken sources (meat, internal organs,egg and cloacal swab). and 27 numbers of Salmonella isolates were confirmed by PCR detection of 16S-RNA gene.from the 400 different samples of chicken sources. The overall prevalence of Salmonella was 6.75%. All the 27 Salmonella isolates were serotyped as Salmonella enterica serovar Typhimurium. The Salmonella Typhimurium serovars were positive for invA, stn, sefA, pefA and spvC genes at variable rates. The virulence genes namely stn, spvC and pefA showed high percentage of homogenicity above 97% with other public sequences from different countries. The Salmonella Typhimurium isolates obtained showed sensitivity towards imipenem and highest resistance to tetracycline.
246.	Molecular detection of Enterotoxigenic Staphylococcus aureus from Milk and Milk Products from Aizawl, Mizoram.	Dipanjal i Paul	Veterinary Public Health &Epidemio logy	2021	Out of 300 samples of raw milk and milk products examined, 6.33% revealed <i>Staphylococcus</i> by conventional method and 23.33% strains were positive with species specific <i>nuc</i> gene. Overall prevalence of <i>S. aureus</i> enterotoxigenic genes was 37 (40.22%) in milk and milk products with raw milk (71.79%), rasmalai (17.65%), icecream (13.04%), paneer (14.28%) and pasteurized milk (33.33%). Highest Sensitivity was found in amoxyclav both in milk and milk whereas highest resistant(66.66 %)to ampicillin and muprirocin and in raw milk and penicillin and oxacillin were found with highest resistance (81.13%) in milk products. On culturing of 62 methicillin resistant strains of <i>S. aureus</i> in MeReSa agar, 7.60% strains were identified as MRSA and subsequently confirmed by detection of <i>mecA</i> gene (5.43%). Phylogenetic tree constructed with the sequences of <i>nuc</i> , <i>mecA</i> and <i>sea</i> revealed a 100% similarity to the all reference sequences available in the Gene Bank, NCBI.
247.	Molecular Detection of Enterotoxigenic Staphylococcus aureus from	Dr Dipanjal i Paul	Veterinary Public Health &	2021	Out of 29 isolates 15 (7.5%) isolates showed presence of desired amplicon

	Milk and Milk products from Aizawl, Mizoram		Epidemiolo		band on agar gel. These 15 (<i>B. cereus</i>) confirmed isolates and 14 (other <i>Bacillus</i> spp.) negative isolates were scrutinized further for presence of six virulence genes. The <i>B. cereus</i> isolates showed presence of virulence genes in descending order <i>nheB</i> 13 (86.6%), <i>hblD</i> 9 (60%), <i>nheA</i> 7(46.6%), <i>hblC</i> 7(46.6%), <i>hblA</i> 0(0%), whereas other <i>Bacillus</i> spp. revealed presence of <i>nheB</i> 14(100%), <i>nheA</i> 9 (64.2%), <i>hblA</i> 1(7.1%) genes with absence of <i>ces</i> gene in both groups. All isolates were evaluated for resistance and susceptibility towards 18 antibiotics, <i>Bacillus cereus</i> isolates showed complete resistance towards penicillins, cefotaxime and ceftriaxone andresistance to ofloxacin (26.6%), tetracyclines (13.3%), amikacin and gentamicin (6.6%), while 100% susceptibility to imipenem, vancomycin, ciprofloxacin, chloramphenicol and erythromycin.
248.	Detection and Molecular characterization of Shiga toxigenic Escherichia coli and EnteropathogenicEscherichia coli from smoked pork(vawksa rep) sold in local market ofAizawl,Mizoram.	Dr.G.J Lallaw mkimi	Veterinary Public Health & Epidemiolo gy	2021	The overall prevalence rate is 30(15%) by conventional method where 23% and 7% of <i>E. coli</i> isolates were obtained during summer and winter season respectively, and 12.5% prevalence of <i>E.coli</i> isolateswere detected by PCR. Out of the total 25 <i>E.coli</i> detected,14 isolates were found to have atleast 1 virulence gene of which 10 (40%),1 (4%) and 3 (12%) were recorded as STEC ,EPEC and EHEC respectively. The distribution of STEC virulence genes <i>stx</i> ₁ only, <i>stx</i> ₂ only, <i>stx</i> ₁ and <i>stx</i> ₂ combined, <i>stx</i> ₂ and <i>eaeA</i> combined, <i>stx</i> ₂ and hlyAcombined and <i>stx</i> ₂ , <i>eaeA</i> and hlyAcombined were 2 (8%), 1 (4%), 2 (8%), 1 (4%), 2 (8%) and 2 (8%) respectively and only 1(4%) EPEC virulence genes <i>eaeA</i> was detected where the distribution of EHEC virulence genes hlyA only and <i>eaeA</i> and hlyAcombinedwere 2 (8%) and 1 (4%)

240	Detection of virulance ganes	Dr	Votorinory	2021	respectively. The <i>E. coli</i> isolates were found to be highest sensitive to Imipenem (100%) followed by amoxyclav(92.85%), ceftriaxone (85.71%), chloramphenicol (78.57%), norfloxacin and nalidixic acid (71.42%) followed by ciprofloxacin (50%) and highest resistance to erythromycin and amoxicillin (100%), kanamycin (92.85%), tetracycline (85.71%), amikacin (71.42%) and gentamicin (42.85%).
249.	Detection of virulence genes of Bacillus cereus from fish and fish products sold at Aizawl, Mizoram	Dr. Arpita T. Naik,	Veterinary Public Health & Epidemiolo gy	2021	Out of 29 isolates 15 (7.5%) isolates showed presence of desired amplicon band on agar gel. These 15 (<i>B. cereus</i>) confirmed isolates and 14 (other <i>Bacillus</i> spp.) negative isolates were scrutinized further for presence of six virulence genes. The <i>B. cereus</i> isolates showed presence of virulence genes in descending order <i>nheB</i> 13 (86.6%), <i>hblD</i> 9 (60%), <i>nheA</i> 7(46.6%), <i>hblC</i> 7(46.6%), <i>hblA</i> 0(0%), whereas other <i>Bacillus</i> spp. revealed presence of <i>nheB</i> 14(100%), <i>nheA</i> 9 (64.2%), <i>hblA</i> 1(7.1%) genes with absence of <i>ces</i> gene in both groups. All isolates were evaluated for resistance and susceptibility towards 18 antibiotics, <i>Bacillus cereus</i> isolates showed complete resistance towards penicillins, cefotaxime and ceftriaxone andresistance to ofloxacin (26.6%), tetracyclines (13.3%), amikacin and gentamicin (6.6%), while 100% susceptibility to imipenem, vancomycin, ciprofloxacin, chloramphenicol and erythromycin. Other <i>Bacillus spp.</i> showed resistance to erythromycin (42.8%), ofloxacin (21.4%), gentamicin (7.1%), chloramphenicol (7.1%) and ciprofloxacin (7.1%) with 100% resistant to penicillins, cefotaxime and ceftriaxoneand100% sensitivity to imipenem, tetracyclines, amikacin, vancomycin.
250.	Detection of Enterococcus	Dr.F.C.	Veterinary	2021	Enterococci are opportunistic pathogens and

	with special reference to Enterococcus faecalis from different water sources in Aizawl district of Mizoram	Beihroki	Public Health & Epidemiolo gy		commonly used as faecal indicator in an aquatic environment being natural inhabitants of the intestinal tracts of animals and humans. By PCR assay, <i>Enterococcus</i> was detected by targeting genus specific <i>tuf</i> gene and <i>Enterococcus faecalis</i> by species-specific <i>sod A</i> gene. The overall prevalence of <i>Enterococcus</i> was 56.78% and 42.14% <i>E. faecalis</i> in different water sources contributing to highest in river followed by spring, stream and run-off water while recreational pool water was free from <i>E. faecalis</i> . 83.90% and 10.85% E. faecalis strains were positive for <i>gel E</i> and <i>cylA</i> . The <i>E. faecalis</i> strains showed highest resistance to aminoglycosides (98.30%) class of antibiotic followed by quinolones (85.59%) and lowest in phenicol (1.69%) class and overall 22.03% <i>E. faecalis</i> strains showed MDR with highest from runoff water followed by spring, river and stream water.
251.	Detection and molecular characterization of Staphylococcus aureus isolated from nares of cattle and its handlers in Aizawl, Mizoram	Dr. Lalnunf ela,	Veterinary Public Health and Epidemiolo gy	2021	The overall prevalence rate of <i>Staphylococcus</i> enterotoxins was 13.12%, with 8.12% from cattle nares and 5% from cattle handler nares. All the positive isolates were resistant to multiple drugs such as oxacillin, ampicillin, cefoxitin, vancomycin etc. To the best of our knowledge, this may be possibly the first report/study of its kind in India
252.	Isolation of <i>Lactobacillus</i> from pork and traditional fermented pork products of Aizawl and detection of its probiotic characteristics	Dr. Kuldeep Kalita	Veterinary Public Health & Epidemiolo gy	2022	The present study aimed to isolate and identify the <i>Lactobacillus</i> bacteria from Sa-Um, a traditional pork product and pig faeces in Aizawl district based on bacteriological culture and molecular detection and <i>in vitro</i> evaluation of its probiotic and safety characteristics. Preliminarily 4 <i>Lactobacillus</i> strains, 3 <i>Lactobacillus</i> . <i>plantarum</i> and 1 <i>Lactobacillus acidophilus</i> were detected with promising probiotic properties and <i>L. plantarum</i> SU 2 from Sa-Um was the most promising probiotic candidate. Sa-Um may be explored as a potential traditional animal origin food source of probiotics.

15. DEPARTMENT OF VETERINARY AND ANIMAL HUSBANDRY EXTENSION

			Maian	Vacu		Thomasia
Sl. No.	Topics of Research	Name of students	Major Subject	Year of Comp letion	Outcome	Thematic area
253.	Status of Dairy Farming in Mizoram: An Exploratory Study	Dr. Reuben Malsawmdawngliana	Veterinary and AH Extension	2015	The analysis of existing dairy farming practices revealed that the dairy farmers were maintaining their farms mostly on traditional way and heavily dependent on locally available inputs.	Sustainable livestock Farming
254.	Backyard Poultry Farming in Mizoram: An Exploratory Study	Dr. Francis LalrinmawiaSailo		2016	The analysis of existing backyard poultry farming practices revealed that the poultry farmers were maintaining their farms on traditional way on low input-output basis and dependent on locally available resources.	Sustainable poultry Farming
255.	A study on Self- help Groups engaged in pig rearing in Mizoram	Dr. Hmingthanzuala		2015	The analysis of SHG engaged in pig rearing revealed that economic factor played a major role as motivating factor for joining SHG, while lack of banking facility was the major factor hindering the functioning of SHG and lack of AI was the major problem in Pig farming.	Sustainable livestock Farming
256.	District of Mizoram	Dr. (Ms.) Debbie Lalngaihawmi		2016	The analysis of information needs revealed that the pig farmers needed information on diseases and its symptoms, care of piglets, vaccination schedule etc.	Sustainable livestock Farming
257.	Status of Broiler Farming in Mizoram: An Exploratory Study	Dr. LalruatfelaSailo		2017	Among the improved broiler farming practices "concentrate feeding" was adopted most followed by "de-worming", "mineral mixture feeding", "vaccination" and "quality water feeding". Marketing was perceived by the respondents as the main constraint in broiler farming followed by costly feed, disease, lack of veterinary service and loss of feed by rodents.	Sustainable livestock Farming
258.	The Role of Rural Women in Household Food Security Activities in Mizoram	Dr. Dorothy Lalchhanhimi		2017	Women played a major and crucial role in food security activities and took the responsibility of rearing and management of livestock. Women were actively taking part in food security activities and rearing of livestock	Sustainable livestock Farming

			T		in the household.	
259.	A Study on Social Structure, Animal Husbandry and Livelihood in a Village of Mizoram	Dr. Lalhmunmawia		2017	It seems physical structure of the village played a role in livelihood and animal husbandry. Villagers were settled on an isolated hill top with poor transportation facilities. Livelihood opportunities were lacking during January-March.	Sustainable livestock Farming
260.	Navigation of Duck Farming System in Tripura	Dr. Supritam Das		2018	Most of the duck farmers reared Desi/Pati duck in low input-low output basis. There is no pragmatic approach in duck farming due to lack of awareness on scientific management among the farmers.	Sustainable livestock Farming
261.	Utilization of Information and Communication Technology (ICT)Tools by Krisihi Vigyan Kendra Functionaries in Mizoram	Dr. Biswajit Chutia		2020	Thee ICTs were used by the KVK extension functionaries to disseminate information to the farmers and other stack holders. Inadequate infrastructure and less facility opportunities in ICTs hindered the utilization of ICTs to its full extent.	Information and Communicat ion Technology (ICT) Application
262.	A Study on Animal Husbandry Practices of Tenyivo Pig Farmers of Nagaland	Dr. K. Joshua Kath		2019	Tenyi-vo rearing is still dominantly reared by female members of marginal household farmers, with medium income group family and reared pigs in confinement with low input on housing and feeding with locally available resources as a subsidiary source of income	Sustainable livestock Farming
263.	Critical Success Factors of Small Scale Piglet production in Mizoram	Dr. Zothanpuii		2020	The study found that various factors contribute to the success of small farmers were factors ranged from production to management and marketing practices. Results show that more successful farmers use production systems that are diverse, adopt measures to control cost, and use marketing strategies that seek the highest level of profit.	Sustainable livestock Farming
264.	Dairy Farming Practices amongst Cooperative Milk Producers in Aizawl District of Mizoram: An analysis.	Dr. Nancy Lalruatfeli		2020	The analysis of the study revealed that dairy farming practiced was still traditional with low adoption level in healthcare and percieved high feed cost as the most seriousconstraints. It also indicated that co-operative dairy farmers depended on dairy farming as their main source of occupation and majority did not receive training related to dairy farming. The average milk production per	Sustainable livestock Farming

	I	T	1		I	I
					annum/per farmer was estimated to be around 4,900.54 litres.	
265.	Critical Success Factors of Small Scale Piglet production in Mizoram	Dr. Zothanpuii	Veterinary & Animal Husbandry Extension	2021	Eight (8) critical factors, namely, herd size factors, breeding factors, operational management factors, health and disease factors, socio-personal factors, economic factors, productive factors and communication factors had been identified as major critical factor that contributes success of small-scale pig farming in Mizoram	
266.	Dairy Farming Practices amongst Cooperative Milk Producers in Aizawl District of Mizoram: An analysis.	Dr. Nancy Lalruatfeli	Veterinary & Animal Husbandry Extension	2021	The dairy farming practices was still traditional with low adoption level in healthcare which indicates that they still need more awareness and training in that particular area. The farmers perceived high feed cost as the most significant constraints because of unavailability of raw materials and also cultivation of feed and fodder was not widely practised by the farmers.	
267.	Sustainability of Dairy Farms of Cooperative Members and Non-members in Tripura: A Comparative Analysis	Dr. Sumit Kumar Debnath	Veterinary & Animal Husbandry Extension	2021	In majority of the dairy farms of members (53.00 per cent), SDFI was found to be high (more than 0.82) level whereas majority of the non-members (47.00 percent) farms were found to be medium (0.56 to 0.82) level of SDFI. It may be concluded from the study that cooperative activities have a good impact to the members' socioeconomic well-being and their farm's long-term viability.	

16. DEPARTMENT OF VETERINARY ANATOMY & HISTOLOGY

			M.V.Sc.						
Sl. No.	Title of the Thesis	Name of the Student	Major Subject	Year Comple	-	Outcome (2-3 lines)			
1. Pig									
Discipline	e: Veterinary Anatomy & l	Histology							
Classifica	tion/ Category								
268	Comparative light and electron microscopic studies on the skin of Zovawk and Large white	Dr. A. Lalramliana	Veterinary Anatomy and Histology	2016	apocrine to glands on	al studies revealed aboundar ubular and sebaceous the skin of Zovawk which we rous in Large White Yorkshire.			

	Yorkshire pig				Myoepithelial cells surrounding the tubular glands ducts in the Zovawk were abundant compare to Large White Yorkshire. Hair follicles were aboundant in Zovawk as compared to Large White Yorkshire.
269	Gross Morphological, Light and Electron Microscopic Studies on the Liver and Pancreas of Zovawk	Dr. Swarup Debroy	Veterinary Anatomy and Histology	2017	The thick connective tissue septa divides the liver lobes into complete hexagonal liver lobules, stroma of which are filled with hepatocytes characterized by very dense lysosome bodies or lipofuscin granules in their cytoplasm which enhance the excretion properties of the liver. Two prominent cells types were observed in the Pancreatic Islets; higher number of cells with spherical shaped nucleus known as B cells present all over the Langerhans, comparatively lower number of cells with oval shaped nucleus present on the centre of the Islet, known as A cells. Numerous zymogen granules were present in the acinar cells of the pancreas of Zovawk.
270	Comparative Gross Morphological, Light And Electron Microscopic Studies On The Testes And Epididymis Of Zovawk And Large White Yorkshire Pig	Dr. Thokchom Shitarjit Singh	Veterinary Anatomy and Histology	2018	The study revealed that the long axis of the testis is oblique in direction in Zovawk while slightly horizontal in Large White Yorkshire. The micrometrical observation in record to thickness of testicular capsule, diameter and height of seminiferous tubules, number of spermatozoa, germ cells and leydig cells/mm2 were found to be higher in left testes as compared to right testes in both Zovawk and Large White Yorkshire.
271	Gross Morphological, Light and Electron Microscopic Studies on the Harderian gland of Zovawk.	Dr. Vanlalrozami	Veterinary Anatomy and Histology	2018	The study revealed that the Harderian gland was compound multilobular acinar gland. The gland was composed of stroma and parenchyma. The parenchyma divided into lobules consisting of abundant acinar cells and ducts. The Transmission Electron microscopic studies illustrated that the nuclei in all the secretory cells acini were large, spherical and basally located with visible nucleoli and considerable amount of heterochromatin.
Deer	o. Votoninomy Anotomy 9-1	listology:	•	1	,
	e: Veterinary Anatomy & F ation/ Category	ustology			
272	Comparative Morphological and Applied Anatomical	Dr. Keneisenuo	Veterinary Anatomy and	2020	The thesis on the morphology, morphometry and Applied Anatomy of Barking and Sambar deer may assist the

WEAD IANG	Studies on the Head Region of Barking Deer (Muntiacus muntjak) and Sambar Deer (Rusa unicolor)		Histology		wildlife officials in identifying the skull bones and differentiating them from other domestic and wild small ruminants. The data obtained in the present study also provided baseline information on the clinically important parameters, which may serve as guidance while performing regional anesthesia of the head region in the above stated species.
	020-JUNE2022	Τ	T		T
273	Light and	Dr. Rupan	Veterinary	2021	There is paucity of available literature
	Ultrastructural Studies	Sarkar	Anatomy &		regarding the cytomorphological,
	on the Blood Cells of		Histology		cytochemical, cytoenzymic and
	Local Cattle of				ultrastructural (scanning electron
	Mizoram.				microscopic and transmission electron
					microscopic) studies of blood (cells) in
					indigenous cattle of Mizoram.
					Accordingly, this research work will may
					provide a novel approach for generating
					base line data to the future researchers who
					could work on the anatomical as well as
					diagnostic importance of blood samples in
					indigenous cattle of Mizoram.

B. THESIS DETAILS (Ph.D)

1. VETERINARY MICROBIOLOGY

Sl	Title of Thesis	Name	of the	Year	r of	Outcome			
No.		Stud	lent	nt Completion					
Anin	Animal Species: Pig								
Cate	Category: Surveillance and monitoring of diseases and antimicrobial resistance								
1.	Analysis of Multidrug Res genes in <i>Escherichiacoli</i> I from Pigs of North-Eastern	Isolates	Dr. Manda Devi	R. kini	201 5	 Antimicrobial resistance profile of <i>E. coli</i> in pigs of entire NER India established. Major ESBLs and non-ESBLs resistance associated genes in <i>E. coli</i> determined. 			
2.		States	Dr. Hosters Kylla	son	201	 Antibiotic prescription pattern for resistant <i>E. coli</i> in animals developed. <i>Picobirnavirus</i> first time reported in pigs associated with piglet diarrhoea. Prevalence of Rotavirus in piglet diarrhoea established. Association of virulent <i>E. coli</i> and <i>Salmonella</i> with diarrhoea in piglets established. Two new serovars of Salmonella first time detected in India. 			
3.	Existence and transmissi	ion of	Dr.		201	• The drug resistant bacteria and their interaction			

Anin	antimicrobial resistance virulence genes of <i>E. coli</i> to man, animal and environr North Eastern States (Meghalaya, Manipur Mizoram) of India	nent in	lhruaipuii	 among human, animals and environment are established in NER states. Metallo-betalactamase carrying <i>E. coli</i> detected in human subjects of NER states, which are transmissible to animals through water. Multiple virulent and AMR genes carrying E. coli were detected in human, pigs, poultry, sheep, goat and cattle including the common water sources of NER states.
	gory: Surveillance and mon	itoring of di	iseases and a	ntimicrobial resistance
4.	Existence and transmission of antimicrobial resistance and virulence genes of <i>E. coli</i> between man, animal and environment in North Eastern States (Assam, Meghalaya, Manipur and Mizoram) of India	Dr. Lalhruaipu	2017	 The drug resistant bacteria and their interaction among human, animals and environment are established in NER states. Metallo-betalactamase carrying <i>E. coli</i> detected in human subjects of NER states, which are transmissible to animals through water. Multiple virulent and AMR genes carrying E. coli were detected in human, pigs, poultry, sheep, goat and cattle including the common water sources of NER states.
	gory: Surveillance and mon		icaacac and a	ntimierahial resistance
5.	Existence and transmission of antimicrobial resistance and virulence genes of <i>E. coli</i> between man, animal and environment in North Eastern States (Assam, Meghalaya, Manipur and Mizoram) of India		2017	 The drug resistant bacteria and their interaction among human, animals and environment are established in NER states. Metallo-betalactamase carrying <i>E. coli</i> detected in human subjects of NER states, which are transmissible to animals through water. Multiple virulent and AMR genes carrying E. coli were detected in human, pigs, poultry, sheep, goat and cattle including the common water sources of NER states.
	ies: Human gory: Surveillance and mon	itaning of di	igoogog and a	ntimiarahial ragistansa
6.	Molecular Characterization and Multiple Drug Resistance (MDR) patterns of Diarrheagenic Escherichia coli isolated from infants and children of Aizawl district, Mizoram	Dr. Karuppasai	C. 2018	 Diarrhoeagenic <i>E. coli</i> detected among the young children of Aizawl, Mizoram. Multiple virulence associated gene were detected in the pathogenic isolates from young children. Combination of virulence and AMR associated genes were detected in same isolates recovered from young children.
7.	Existence and transmission of antimicrobial resistance and virulence genes of <i>E</i> .	Dr. Lalhruaipu	ii 2017	 The drug resistant bacteria and their interaction among human, animals and environment are established in NER states. Metallo-betalactamase carrying <i>E. coli</i> detected in

coli between man, animal	human	subjects	of	NER	states,	which	are
and environment in North	transmissible to animals through water.						
Eastern States (Assam, Meghalaya, Manipur and Mizoram) of India	• Multiple virulent and AMR genes carrying <i>E. coli</i> were detected in human, pigs, poultry, sheep, goat						goat
Witzoram) of mala		le includir	ng th	e comr	non wate	er source	s of
	NER sta	ites.					

2. ANIMAL NUTRITION

PhD p	orogramme
-------	-----------

Thematic research area: Mineral mapping of NE states and preparation of Area Specific Mineral mixtures for livestock

Species: Cattle

Sl	Title of the thesis	Name of the	Year of	Salient outcomes
No.		student	complet	
			ion	
8.	Studies on Soil-Plant-Animal	Dr. Suzanne	2017	1.Dairy cattle of Mizoram were deficient in
	Interrelationship in Relation to	Malsawmthangi		most of the macro & micro minerals especially
	Macro and Micro Mineral status	2012-V-01(D)		Ca, P and Co.
	and effect of formulated area			2. Area specific mineral mixtures prepared for
	specific mineral mixture			dairy cattle in Mizoram.
	supplementation on production			2.Formulated ASMM supplementation to dairy
	performance of Dairy Cattle in			cows increased milk production by 21.14%
	Mizoram.			

Thematic research area: Utilization of locally available feeds and foddersfor livestock and poultry feeding

~	•	\sim	•
(n	0100	6.4	THINA
่อบต	cies:	ıO	wille

9.	2	Effect of feeding palm oil	Dr.Temjennungsang	2018	The replacement of maize with palm oil		
		(Elaeisguineensis) sludge	2015-V-01(D)		sludge(POS) up to 30% in the concentrate diets		
		as a partial replacement of			did not show any adverse effect on the growth		
		maize on the performance			performance, haemato-biochemical profiles,		
		of growing – finishing			nutrient utilization and carcass characteristics		
		Pigs.			of growing-finishing pigs. Therefore,		
					replacement of maize up to 30% with POS in		
					the concentrate diets of growing-finishing pigs		
					maybe recommended without any adverse		
					affect on the performance and also to reduce		
					the cost of pig production.		

3. VETERINARY BIOCHEMISTRY

Ph.D.								
S.No.	Title of the thesis	Name of the student	Major Subject	Year of completion	Outcome (2-3 lines)			
Pig								
DISCII	DISCIPLINE: Veterinary Biochemistry							

Classi	Classification/Category: Early pregnancy diagnosis									
10.	Exploration of serum protein biomarkers for early pregnancy diagnosis in pigs	Dr. Ankan De	Veterinary Biochemistry	2019	First report on comparative serum protein profiling of different early pregnancy stages in pigs. 2. Identified a set of proteins which can be used as potential biomarkers for early pregnancy diagnosis in pigs and thereby facilitating more economic pig production.					

4.DEPARTMENT: DEPARTMENT: VETERINARY ANATOMY & HISTOLOGY

Sl.		Name of the	Major	Year of	Outcome of the Research Works
No.	Title oh the thesis	students	Subject	Completion	(2-3 lines)
11.	Anatomical	Dr. Swarup	Veterinary	2021	1. Acicular tips with clavulated roots
	Characterization,	Debroy	Anatomy &		were observed in the hair of local
	Elemental and		Histology		cattle of Mizoram and
	Cytochrome B				Meghalaya. Ovoid bodies were
	Gene Analysis in				only present in the hair of local
	the Hair of the local				cattle of Meghalaya. In cross
	cattle of Mizoram				section more oval shaped hairs
	and Meghalaya:				were observed in local cattle of
	A Comparative				Meghalaya, whereas more round
	Study				hairs were depicted in local cattle
					of Mizoram.
					2. In local cattle of Mizoram, the
					medulla was thickest in the
					middle portion of the hair shaft,
					whereas thickest medulla was
					observed in the distal portion of
					the hair shaft in local cattle of
					Meghalaya.
					3. The hair of the local cattle of
					Meghalaya had more serrated
					scales than local cattle of
					Mizoram.
					Witzoram.
					4. The X/Y feret and scale count of
					local cattle of Meghalaya were
					significantly greater than those of
					local cattle of Mizoram.
					5. Uranium and fluorine weight %

		were significantly higher in the
		hair of local cattle of West khasi
		and Aizawl districts, respectively.
		6. Weight % of sulfur was very low
		in the hair of local cattle of all the
		eight districts under study.
		Based up on the hair morphological
		and morphometric differences in the
		final statement it can be said that,
		these two animals under study are
		not the same animal and also can be
		belonging two different breeds of
		cattle

5. Department: Veterinary Pathology

Sl. No.	Title oh the thesis	Name of the students	Major Subject	Year of Completion	Outcome of the Research Works (2-3 lines)
12		Dr. Amitava Paul	Veterinary Pathology	2022	 The PRRSV, CSFV, PCV2 has been identified as important endemic viral aetiology in pig population of Mizoram. ASFV epidemic was recorded in pig population of Mizoram in India. Syndemic infection of PRRSV with CSFV and also with PCV2 has been detected and studied for the first time in pig population of Mizoram, India.

COLLEGE OF AGRICULTURAL ENGINEERING & POST HARVEST TECHNOLOGY, RANIPOOL, SIKKIM

M. Tec	h.									
S. No.	Title of the Thesis	Name of the student	Major Category	Year of Completion	Outcome					
	Discipline- Farm Machinery and Power Engineering									
1.	Design and Development of Mechanically Metered Self Propelled Rhizome Planter	Kshitij Adhikari	Farm Machinery and Power Engineering	2015	1. Belt-cup type positive metering system for rhizomes planting 2. Development of light weight					
					mechanically metered self- propelled rhizome planter.					
2.	Design and Development of Solar- Biomass Hybrid Dryer for Large Cardamom Drying	Vishnu Sankar. A.	Farm Machinery and Power Engineering	2017	The solar biomass hybrid dryer is suitable for small scale large cardamom farmers in rural areas of the countries. The solar-biomass hybrid dryer was capable of attaining a maximum temperature a maximum temperature of 66.6°C in solar mode and 70°C in the gasifier mode of operation. The large cardamom having an initial moisture content of 82.3% dried to a moisture content of 10% within 20 hours. The average solar					

					collector efficiency of developed solar- biomass hybrid dryer for drying of large cardamom is 35.39%. The average gasifier efficiency and combustion efficiency of solar-biomass hybrid dryer for drying of large cardamom is 71.57% and 55.36% respectively. The solar-biomass hybrid dryer is able to reduce the drying time and increase the
3.	Optimization of Operating Parameters of rotavator for Soil tillage quality of medium textured Soil under Soil bin Condition	Philipo William Kulaya	Farm Machinery and Power Engineering	2019	product quality in comparison to traditional bhatti and open sun drying. Optimized operating parameters of different shaped rotavator blades
4.	Development of Ergonomically Designed Pedal Operated Maize Sheller for Sikkim Women Workers	Vusa Manisha	Farm Machinery and Power Engineering	2019	for higher quality work with minimum energy requirement Pedal operated maize sheller was developed & evaluated. The performance results indicated that average values of output

					efficiency and cost of shelling at 3.82 ms ⁻¹ peripheral speed of cylinderwere recorded as 26.2 kgh ¹ , 87.3%, and ₹3.08 per kg respectively. The average output capacities for maize shelling using tubular maize sheller and traditional shelling were 10.6 and 7.7 kgh ⁻¹ respectively
5.	Design, Development and Performance Evaluation of Zero-till Planter Matching to Mini Tractor for Small Farm Mechanization	Lilesh Patel	Farm Machinery and Power Engineering	2020	1. Seed metering technology for mustard seed was developed 2. Machine is suitable for planting of mustard under zero till condition
6.	Design and development of buckwheat thresher for small farm mechanization	Mr. Maniyar Mohammad Sohail	Farm Machinery and Power Engineering	2021	 Engineering properties of buckwheat seed grown in Sikkim studied in relation to moisture content Small buckwheat thresher was developed and tested Number of publications: 2
7.	Development of Ergonomically	Mr. Rahul Nath	Farm Machinery	2021	• Engineering properties of

	Designed Cashew Nut		and Power		oven-roasted
	Sheller		Engineering		cashew nut
					were studied
					 Ergonomically
					Designed
					Cashew Nut
					Sheller was
					developed
					 Cost of
					developed
					machine was
					₹14250 with
					increase in
					annual income
					of 2.2 times
					and 64.86% savings in
					labour
					requirement
					than
					traditional
					shelling of the
					cashew nuts.
					 Number of
					publication: 1
Disc	 cipline- Processing A	nd Food Eng	ineering		
8.	Standardization of	Sajesh Chettri	Processing And	2017	•Process for
	Vacuum Drying	3	Food		production of green
	Parameters for Drying		Engineering		and red cherry pepper
	Green and Red Cherry				flakes through vacuum
	Pepper (Dalley)				drying was
					standardized.
					•An optimum drying
					temperature of 60°C
					and thickness of 6 mm
					was recommended for
					producing good quality cherry pepper
					flakes
9.	Optimization of	Thameridus B.	Processing And	2017	a) Vacuum dried
	Vacuum Drying	Marak	Food		ginger powder at
	Parameters for		Engineering		optimized condition
	Production of Ginger				(65°C and 3 mm
	Powder from Gorubathane Variety of				thick) was observed
	Sikkim				to have better quality
	~	<u> </u>	<u> </u>		

					in terms of colour and maximum retention of gingerol and shogaol content as compared to hot air drying. b) Total cost for drying ginger slices using vacuum dryer and hot air dryer was found to be Rs. 146.5 and Rs. 37.2 per kg respectively of fresh ginger slices.
10.	Standardization of Process Technology for the Manufacture of Intermediate Moisture Foods from Chayote (Sechium edule)	Taynath Santosh Jagannath	Processing And Food Engineering	2019	a) The shelf life of sugar based Chayote Petha was found to be 60 days at refrigerated temperature and 15 days at room temperature based on acceptable sensory,physico-chemical and microbiological attributes. b) The shelf life of Honey based Chayote Petha was found to be 60 days at refrigerated temperature and 45 days at room temperature based on acceptable sensory,physico-chemical and microbiological attributes.
11.	Functional Design and Development of a Simple Batch Type Osmotic Dehydrator for Horticultural Crops	Jitson Achom	Processing And Food Engineering	2019	One osmotic dehydrator was designed and developed for production of osmo-

						dried intermediate moisture foods • The capacity of the dehydrator was 20 kg/batch.
	12.	Standardization of Process for Development of Composite Flour Based Multi-Grain Pasta	Vijay Shankar Kushwaha	Processing And Food Engineering	d 2019	1) Optimized functional composite flour from germinated grains like buckwheat, finger millet and paheli dal 2)Optimized process for composite flour based multi-grain pasta from flour of germinated grains
	13.	Process Standardization for Extraction of Oligosaccharides from Rice bean	Mr. Bharat Bhushan	Processing and Food Engineering	2021	a) Process technology for extraction of oligosaccharides from rice beans
	14.	Development of Foam Mat Vacuum Dried Pomelo Juice Powder	Ms. Sophia Chanu Warepam	Processing and Food Engineering	2022	a) Process technology for processing of Foam mat vacuum dried pomelo juice powder
	15.	Design, Development and performance Evaluation of Large Cardamom Grader	Mr. Loukrakpam Yaiphaba Meetei	Processing and Food Engineering	2022	a) A large cardamom grader is developed for grading of large cardamom
		cipline- Soil and Wa	ter Engineer	ring / Soil and	d Water C	Conservation
_		ineering	D 1	C '1 1	2017	D 1 1 "
	16.	Development of Soil Moisture Balance Models and Estimation of Water Footprint of Major Crops in Sikkim	Deependra Rai	Soil and Water Engineering	2017	Developed a soil Moisture Balance Model for estimating irrigation requirement. Estimated water foot prints of large
	17.	Temporal	Pema	Soil and	2017	cardamom for enhancement of water use efficiency of Sikkim The aridity indices
<u></u>	1/.	1 emporar	rema	SOII allu	2017	The artury morces

	Characteristics of Trends in Aridity Index in Northeast India in Perspective of Precipitation and Evapotranspiration	Tshering Lepcha	Water Engineering		were found to be varying from 0.28 to 0.88 (0.23 to 0.98) among all the selected five stations from NE India in post-monsoon (winter) seasons. It was found that rainfall followed by ETo and maximum temperature were the main causal parameters of the observed trends in annual aridity indices in the region.
18.	Effect of Multi- Column Sand Filter on the Turbidity and Escherichia Coli Count of Wastewater	Prem Ranjan	Soil and Water Engineering	2017	Patented matter. The desired quality water can be procured at any stage. The fabricated filter has the ability to remove turbidity and E. Coli bacteria from the sewage.
19.	Soil Aggregate Stability Variation in Himalayan Watershed of Sikkim	Prachi Yadav	Soil and Water Engineering	2019	 Developed pedotransfer function to estimate the Mean Weighted diameter (MWD) of Sikkim Soil from easily measurable soil properties. MWD, an index of soil aggregate stability, is positively corelated with Organic carbon and clay content in the soil MWD is higher in forested land use than the agricultural land ue suggesting that the soils of forest are less susceptible to
20.	Copula-based drought	P. Kanthavel	Soil and	2019	erosion Drought events

	analysis in Selected Stations of North East India		Water Consevation Engineering		(Highest drought severity) based on SPI-1 (SPI-3) were found to be 89 (4.8 and 3.6) and 78 at Gangtok and Imphal, respectively. The 'OR' type (AND type) bivariate and trivariate return period analysis reveals that Imphal (Gangtok) is prone to droughts of moderate risks with higher frequencies (extreme risks with shorter frequencies).
21.	Geomorphometry based Prioritization of the Teesta River Basin in Sikkim using Remote Sensing Data	Sandeep Kumar	Soil and Water Conservation Engineering	2019	•RS data and GIS can be used to prioritize the watersheds of Sikkim for oil erosion control measure •Prioritized watersheds were determined for taking up soil erosion control measures in the sub watersheds of Teesta Basin in Sikkim •Five watersheds were found under very high priority and eighteen were found under high priority from erosion point of view.
22.	Spatio-temporal variations of pan coefficients in Northeast India	Ms. Mandru Srilakshmi	Soil and Water Conservation Engineering	2021	Pan-coefficient (Kpan) values in different time scales were obtained over different parts of NE India, i.e., 0.79 in March at Umiam and 0.978 in annual scale at Imphal. Both increasing and decreasing trends in

					Kpan were observed over different sites from NE India. Spatio-temporal maps of Kpan over northeast India were produced, that would be of great help to water planners.
23.	Estimation of Soil Erodibility of Watershed in Sikkim using Soil Parameter	Mr. A. Prakash	Soil and Water Conservation Engineering	2021	 Soil erodibility factor was estimated from soil properties which can be used for soil erosion estimation from Himalayan region Soil organic carbon is one of the most important factor for decreasing the soil erodibility The Spatial distributed map of oil erodibility, TWI, SPI generated for Sikkim can be used for predicting soil erosion from Sikkim Watersheds
24.	Remote Sensing Based Drought Estimation for Sikkim	Ms. Gargi Sarma	Soil and Water Conservation Engineering	2021	• Spatio-temporal maps of Agricultural drought were generated for Sikkim which can be utilized for crop planning MODIS derived Agricultural Drought severity index showed the potential of RS based drought severity index application in Hill terrains
25.	Structural analysis and micro-climate modeling of naturally ventilated polyhouse at high-hilly area site	Mr. Alvin C. Lyngwa	Soil and Water Conservation Engineering	2022	Structural analysis of Naturally ventilated polyhouse at high- hilly area site in Sikkim was carried

los Rai	tellite remote nsing data based soil as estimation in the nikhola watershed, kkim	Mr. Minkeng Tapak	Soil and Water Conservation Engineering	2022	such as, dead, live and wind, were tried to test the structural stability of the NVP under Sikkim condition. Micro-climate study of inside and outside data of temperature, relative humidity and solar radiation was also performed. • Two NVPs were constructed at Lying Chongrang village, Gangtok district based on the above analysis. • About 64 to 73% of the area in the Ranikhola watershed experiences extremely severe (>80 tonnes/hayear) soil loss • All the four subwatersheds in the Ranikhola watershed experience extremely severe soil loss • Maximum of the area in the subwatershed-III experiences
	Disciplin	e: Renewabl	a Fnaray Fn	ginggring	area in the sub- watershed-III

27.	Experimental	Mr.	Renewable	2022	1) Test setup
	Investigation of Solar	Lalthlengliana	Energy		Developed for testing
	Photovoltaic Module		Engineering		performance of SPV
	with Indoor and				*
	Outdoor Conditions in				module with changing
	Sikkim				solar insolation,
					temperature and tilt
					angle on the basis of
					indoor & outdoor
					conditions.
					2) The Indoor
					efficiency of modules
					has ranged from 16-
					25.03 % for both
					series and parallel
					connections while for
					outdoor conditions
					efficiency ranged from
					6.37-20.8%.
		ne: Irrigation			- Company of the Comp
28.	Assessment of Spatial	Ms.	Irrigation	2022	The IMD gridded data
	and Temporal	Rikuthakani	and		on monthly basis can
	Variation of Rainfall	Phawa	Drainage		be used for water
	in Meghalaya		Engineering		resources management
		DI D			study in Meghalaya.
		Pn. D	Theses		
Sl. No.	Title of thesis	Name of the	Major	Year of	Outcome of research
		student	Subject	Completion	work
1.	Drought Mapping and	Aribam Priya	Soil and	2021	Drought
	Vulnerability	Mahanta	Water		(Meteorological)
	Assessment in	Sharma	Conservation		characteristics over
	Tripura,		Engineering		Tripura (NE India)
	Northeast India				based on two drought
					indices, namely,
					standardized
					precipitation index
					(SPI) and standardized
					precipitation
					evapotranspiration
					index (SPEI) were
					obtained in different time scales.
					Remote sensing based
		<u> </u>			drought indices were

					used to identify the agricultural drought events during 2001-2016 over Tripura. 14 different parameters were selected to identify the main drought causative parameters using the Analytical Hierarchy Process as well. SPI-3 based analysis revealed the highest drought severity of 17.18 that lasted for nine months. About 43 % (20%) of total area of Tripura was found to be moderately (severely) vulnerable to drought. Rainfall, ET and slope parameters were found to be the main causal drought parameters over Tripura as per the vulnerability assessment for Tripura. The study will assist the policy makers in drought preparedness and making appropriate drought strategies in the hilly state of the
2.	Development of Portable Air-Assisted Electrostatic Spraying System for Application of Biopesticides Suitable for Hill Farming	Solanke Krishna Rustumrao	Farm Machinery and Power Engineering	2022	Portable Air- Assisted Electrostatic Spraying System for Application of Biopesticides was developed and evaluated in field successfully

COLLEGE OF FISHERIES, LEMBUCHERRA, TRIPURA

M.F.Sc.

Sl.	Title of thesis	Name of	Major	Year of	Outcome						
No		the	Subject	completion							
•		Student									
	Fish Pathology & Microbiology										
1.	Occurrence, distribution &	Mr.	Fish	2009							
	Pathology of monogenetic gill	Himadri	Patholo								
	parasite in <i>Labeo Rohita</i> (Hamilton)	Saha	gy & Microbi								
	(Haiiiitoli)		ology								
2.	Effect of Withania somnifera root	Mr. Arun	Fish	2009							
۷.	on hematological, biochemical	Sharma	Patholo	2007							
	and immunological parameters of	Silarina	gy &								
	Indian Major carp, Labeo Rohita		Microbi								
	(Hamilton)		ology								
3.	Effect if Dietary Vitamin C on	Mr. Tandel	Fish	2009							
	health status of <i>Labeo Rohita</i>	Riteshkuma	Patholo								
		r Shantilal	gy &								
			Microbi								
			ology								
4.	Immunological, hematological	Mr.	Fish	2010							
	and biochemical responses of	Arunjyoti	Patholo								
	epizootic ulcerative synderome	Baruah	gy &								
	(eus) affected <i>labeo bata</i>		Microbi								
	(Hamilton) in Tripura		ology								
		Fish Process	ing Techno	alogy							
5.	Assessment of microbiological	Mr. Ranjit	Fish	2010							
<i>J</i> .	and biochemical quality of <i>labeo</i>	Bordoloi	Processi	2010							
	rohita (Hamilton) marketed at	20100101	ng								
	Agartala (Tripura)		Technol								
			ogy								
6.	Effects of salt and storage	Mr.	Fish	2011							
	temperature on the shelf life of	Prasanta	Processi								
	shidal-a fermented fish product in	Mahanta	ng								
	Northeast India		Technol								
			ogy								
7.	Effects of process variables on the	Mr.	Fish	2011							
	physico-chemical properties of	Rajkumar	Processi								
	fish based estruded snacks	Ratankuma	ng								
		r Singh	Technol								
0	A	M. C	ogy	2011							
8.	Assessment of shelf-life of silver	Ms. Sampa	Fish	2011							
	carp (hypophthalmicthys molitrix)	Deb	Processi								
	under chilled and frozen storage condition		ng Technol								
<u> </u>	COHUITION	I .	1 CCIIIIOI								

			ogy	
9.	Influence of ice storage on raw	Mr. Kapil	Fish	2012
'	materials for the production of	Debnath	Processi	
	quality sund-dried fish products	Deomain	ng	
	quality suite affect fish products		Technol	
			ogy	
10.	Shelf-life evaluation of frozen	Ms. Sujata	Fish	2012
10.	stored mince of <i>pangasius sp.</i> For	Debbarma	Processi	
	product development		ng	
	r		Technol	
			ogy	
11.	Study of storage characteristics of	Mr. Obeth	Fish	2012
	packaged rohu (<i>labeo rohita</i> ,	Darngawn	Processi	
	Hamilton, 1822) fish steaks		ng	
	•		Technol	
			ogy	
12.	Assessment of microbiological	Mr. Arup	Fish	2012
	and hugienic status of battala	Kumar Das	Processi	
	retail fish market, Agartala,		ng	
	Tripura		Technol	
			ogy	
13.	Technology evaluation of 'phasa	Mr.	Fish	2013
	shidal', a salt-free fermented	Deepayan	Processi	
	setipinna phasa (Hamilton, 1822)	Roy	ng	
			Technol	
			ogy	
14.	Biochemical and storage	Mr. Jag Pal	Fish	2013
	charecteristics of fam raised and		Processi	
	wild Indian butter catfish (ompok		ng	
	bimaculatus, Bloch 1794) in		Technol	
	Tripura, India		ogy	2012
15.	Effect of gnger extract during low	Mt.	Fish	2013
	temperature storage of rohu	Satyendra	Processi	
	(labeo rohita, Hamilton 1822)	Kumar	ng Ta alama1	
	steaks	Maurya	Technol	
1.0	Development and stage as at 1.111	Ma	ogy	2012
16.	Development and storage stability of restructured products from	Mr. Hemant	Fish Processi	2013
	silver carp mince	Hemant Hari		
	sirver carp innice	Tripathi	ng Technol	
		Tipauii		
17.	Study and scale up of numsing –	Mr. Rupak	ogy Fish	2013
1/.	an ethnic poduct of the missing	Kumar	Processi	2013
	tribes of Northeast India	Taye	ng	
	11000 of Frontioust maid	14,0	Technol	
			ogy	
18.	Studies on the effect of frozen	Mr. Kanasi	Fish	2014
10.	storage on quality related changes	Subbaiah	Processi	
	in tilapia (oreochromis niloticus)		ng	
	Technology muscle		8	
	rechnology muscle			

19.	Influence of different packaging	Mr. Prabir	Fish	2014
1).	methods on the shelf- life of	Debbarma	Processi	
	cured fish products Technology		ng	
20.	Effect of plant extracts on the	Mr. Pradip	Fish	2015
20.	functional properties and	Kumar	Processi	
	refrigerated storage life of gel	Maurya	ng	
	from thai pang as		8	
	Technology(pangasianodon			
	hypophtha/mus) surimi			
21.	"Development of fish protein	Ms. Anisha	Fish	2016
	isolate enriched extruded snacks"	Kar	Processi	
			ng	
22.	"Effects of bioactive phenolics	Ms.	Fish	2016
	from spices during frozen storage	Priyanka	Processi	
	of emulsion sausage from	Sahu	ng	
	pangasius Technology			
	(oanqasianodon hypophthalmus)"			
23.	"Development of shelf stable fish	Mr. Sanja	Fish	2016
	paneer from low cost fish through	Y Kumar	Processi	
	retort pouch processing		ng	
	technology"			
24.	Isolation and characterization of	Mr.	Fish	2016
	predominant bacteria associated	Shubham	Processi	
	with few fermented fish products	Gupta	ng	
25	of Technologynortheast india" "Studies on the Effect of Carrot	Ma	Ei ala	2017
25.	(Oaucus carota) Concentrated	Mr. Sanjeev	Fish Processi	2017
	Protein on Stability of Surimi	Sharma		
	during TechnologyFrozen	Silailia	ng	
	Storage"			
26.	"Develpment of Fish Protein	Ms.	Fish	2017
20.	Enriched Noodles" Technology	Hidangmay	Processi	
		um	ng	
		Dhaneshwo		
		ri Devi		
27.				I
۷1.	"Optimization and Functional	Mr.	Fish	2017
21.	"Optimization and Functional Characterization of Fish	Mr. Wangkheir	Fish Processi	2017
21.	Characterization of Fish Processing 2017	Wangkheir akpam		2017
21.	Characterization of Fish Processing 2017 Protein Hydrolysate from	Wangkheir akpam Romen	Processi	2017
21.	Characterization of Fish Processing 2017 Protein Hydrolysate from Freshwater Shark (Wallago	Wangkheir akpam	Processi	2017
21.	Characterization of Fish Processing 2017 Protein Hydrolysate from Freshwater Shark (Wallago Technology attu) Waste using	Wangkheir akpam Romen	Processi	2017
	Characterization of Fish Processing 2017 Protein Hydrolysate from Freshwater Shark (Wallago Technology attu) Waste using Bromelain Enzyme"	Wangkheir akpam Romen Mangang	Processi ng	
28.	Characterization of Fish Processing 2017 Protein Hydrolysate from Freshwater Shark (Wallago Technology attu) Waste using Bromelain Enzyme" "Effect of Fruit Peel Extracts on	Wangkheir akpam Romen Mangang Ms. Seema	Processi ng Fish	2017
	Characterization of Fish Processing 2017 Protein Hydrolysate from Freshwater Shark (Wallago Technology attu) Waste using Bromelain Enzyme" "Effect of Fruit Peel Extracts on Rohu (Labeo rohita Hamilton,	Wangkheir akpam Romen Mangang	Processi ng Fish Processi	
	Characterization of Fish Processing 2017 Protein Hydrolysate from Freshwater Shark (Wallago Technology attu) Waste using Bromelain Enzyme" "Effect of Fruit Peel Extracts on Rohu (Labeo rohita Hamilton, 1822) Steaks during Refrigeration	Wangkheir akpam Romen Mangang Ms. Seema	Processi ng Fish	
28.	Characterization of Fish Processing 2017 Protein Hydrolysate from Freshwater Shark (Wallago Technology attu) Waste using Bromelain Enzyme" "Effect of Fruit Peel Extracts on Rohu (Labeo rohita Hamilton, 1822) Steaks during Refrigeration Storage"	Wangkheir akpam Romen Mangang Ms. Seema Netam	Processi ng Fish Processi	2017
	Characterization of Fish Processing 2017 Protein Hydrolysate from Freshwater Shark (Wallago Technology attu) Waste using Bromelain Enzyme" "Effect of Fruit Peel Extracts on Rohu (Labeo rohita Hamilton, 1822) Steaks during Refrigeration Storage" "Screening of Carps from Various	Wangkheir akpam Romen Mangang Ms. Seema Netam	Processi ng Fish Processi ng Fish	
28.	Characterization of Fish Processing 2017 Protein Hydrolysate from Freshwater Shark (Wallago Technology attu) Waste using Bromelain Enzyme" "Effect of Fruit Peel Extracts on Rohu (Labeo rohita Hamilton, 1822) Steaks during Refrigeration Storage" "Screening of Carps from Various Sources for Isolation and	Wangkheir akpam Romen Mangang Ms. Seema Netam	Processi ng Fish Processi ng Fish Processi	2017
28.	Characterization of Fish Processing 2017 Protein Hydrolysate from Freshwater Shark (Wallago Technology attu) Waste using Bromelain Enzyme" "Effect of Fruit Peel Extracts on Rohu (Labeo rohita Hamilton, 1822) Steaks during Refrigeration Storage" "Screening of Carps from Various	Wangkheir akpam Romen Mangang Ms. Seema Netam	Processi ng Fish Processi ng Fish	2017

	(STEC and EPEC)"				
30.	"Optimization of Enzymatic	Ms.	Fish	2018	
	Hydrolysis of Visceral Waste	Upasana	Processi		
	Proteins of Labeo rohita"	Mohanty	ng		
31.	"Isolation, Purification and	Mr.	Fish	2018	
	Characterization of Proteases	Biswajit	Processi		
	from Fish Visceral Wastes"	Mohanty	ng		
32.	"Evaluation of Seasonal Variation	Ms. Rupali	Fish	2018	
	in Physicochemical and	Das	Processi		
	Microbiological Quality of		ng		
	Selected Dried Fishes				
	TechnologyAvailable in Tripura				
	Market"	3.6	F: 1	2010	
33.	Isolation and Characterization of	Ms.	Fish	2019	
	Collagenolytic Proteases from	Ankeeta	Processi		
	Freshwater Fish Waste	Nayaki	ng Taabnal		
			Technol		
34.	Effect of Multiple Freezing-	Ms.	ogy Fish	2019	
34.	Thawing Cycles on Quality of	Swapnarani	Processi	2019	
	Indian Major Carps	Samantaray	ng		
	maran wajor Carps	Samamaray	Technol		
			ogy		
35.	Effects of Tea Extracts on	Mr.	Fish	2021	1.Fish cookies with 8%
55.	Nutritional Quality and Shelf	Bhabani	Process	2021	fish meat powder were
	Stability of Cookies Prepared	Shankar	ing		found to be the best
	from Fish during Storage	Rout	Techno		based on sensory and
	from 1 isn during Storage	Rout	logy		other qualities.
			(FPT)		2. 0.4% of green tea &
			(111)		black tea extracts (tea
					`
					waste after first use)
					incorporated fish
					cookies effectively
					reduced degradation of
					protein & fat oxidation.
					3. Antioxidant &
					antimicrobial activity of
					tea extracts were
					beneficial in
					maintaining keeping
					quality of the cookies
					for 3 months at ambient
					condition.
36.	Application of Protein and	Mr.	Fish	2021	1.The results of the
	Non-Protein Edible Coatings	Kumar	Process		study deduced that fish
	for Oil Reduction Efficacy in	Gaurav	ing		fillets coated with both
	Fried fish Fillets with Special	Jauray	Techno		protein and nonprotein
	-				
	Emphasis on Fish Proteins		logy		coatings could reduce

37.	Effect of Drying Temperatures on the Quality and Storage Stability of Small Indegenous Species of Fish	Pri	i. umya yadarsh Panda	Fish Process ing Techno logy (FPT)	2021	the fat uptake after frying. 2. Among three protein coatings & three nonprotein coatings, fish fillets coated with 15 % soy protein and 1 % CMC were shown to have the highest fat uptake reductions (57.78 % & 44.77 %) compared to fish fillets that remained uncoated (control). 1. Effect of different drying temperatures on the quality and storage stability of the SIS of fish i.e., <i>A.mola</i> , <i>Mystus</i> sp and <i>Puntius</i> sp. was studied. The ideal
						studied. The ideal temperature was found between 40-50°C
38.	Comparative Study of Quality Assessment of Kiln and Traditionally Made Smoked Fish of Manipur,India	Ms. Langlenbi Maibam		Fish Process ing Techno logy (FPT)	2021	1.The kiln smoked fish (A.mola and O.niloticus) showed better quality compared to traditional smoked fish
		Δ	austic A	nimal Heal	th	
39.	Vaccination potential of antigenic preparations from <i>aphanomyces</i> invadans in catla catla (Hamilton)		Mr. Dipang ka Saikia	Aquatic Animal Health	2011	
40.	Effects of water borne iron on spaw and fry on Indian major carps in Tripura		Ms. Mitra Debnat h	Aquatic Animal Health	2011	
41.	Immunoreactivity of <i>catla</i> , <i>catla cat</i> (Hamilton) sensitised with <i>edwardsiella tarda</i>	tla	Ms. Thonga m Bidya Devi	Aquatic Animal Health	2012	
42.	Effects of dietary rubber (hevea brasiliensis) seed meal on growth, haematolofical and biochemical indices of labeo rohita (Hamilton)		Mr. Biraj Bikash Sharma	Aquatic Animal Health	2012	

43.	Systematic and mucosal immune	Mr.	Aquatic	2013
13.	responses in <i>catla catla</i> (Hamilton)	Khriez	Animal	
	vaccinated with edwardsiella tarda	hato	Health	
	vaccinated with carres asserte tenace	Nakhro	Trouttr	
44.	Effects of bacillus amyloliquefaciens	Ms.	Aquatic	2013
	as potential	Anushr	Animal	
	r	ee Das	Health	
45.	Evaluation of a dietary nutraceutical	Ms.	Aquatic	2014
75.	for mitigating acid stress in labeo	Sojitra	Animal	
	roh!ta (hamilton) fingerlings	Khushb	Health	
	1011100 (11111110011) 1111901111190	uben	11001111	
		Ratilal		
		11001101		
46.	Effects of dietary chitin and bacillus	Mr.	Aquatic	2014
10.	subtilis on immunity, disease	Timoth	Animal	
	resistance and growth of catla (cat/a	y	Health	
	cat/a)	Sangm		
	,	a		
47.	Effects of waterborne iron on patho-	Ms.	Aquatic	2015
	physiological responses of cirrhinus	Mavura	Animal	
	mrigala (hamilton) fingerlings"	pu	Health	
		Anusha		
48.	"Effects of ketoconazole on patho-	Mr.	Aquatic	2016
	physiological responses in labeo	Asish	Animal	
	rohita (hamilton) fingerlings"	Kumar	Health	
49.	Thesis title has been corrected as per	Ms.	Aquatic	2016
	synopsis "effects of miconazole on	Mukta	Animal	
	patho-physiological responses in/abeo	Singh	Health	
	rohita (hamilton) fingerlings"	-		
50.	"Effects of mebendazole against gill	Ms.	Aquatic	2016
	monogenean in labeo rohita	Aurosh	Animal	
	(hamilton) fingerlings"	ree	Health	
51.	"Effects of dietary supplementation of	Mr.	Aquatic	2016
	biofloc on immunity and disease	Biswan	Animal	
	resistance of rohu, labeo	ath	Health	
	rohita(hamilton)	Kheti		
52.	Dietary Effects of Heat-Killed	Mr.	Aquatic	2016
	Bacillus amyloliquefaciens on	Sukha	Animal	
	Immunity and Disease Resistance of	m	Health	
	Catla, Catla catla (Hamilton),	Tushib		
		a Singh		
53.	"Efficacy of Bamboo (Melocanna	Md.	Aquatic	2017
	baccifera (Roxburgh) Kurz, 1875)	Idrish	Animal	
	Extract in <i>Labeo rohita</i> (Hamilton,	Raja	Health	
	1822)Fingerlings against Fungal	Khan		
	infection under Low pHStress"			
54.	"Influence of Chitin on Immuno-	Mr.	Aquatic	2017
	biochemical Responses and	Rahul	Animal	
	Resistance of <i>Labeo rohita</i> (Hamilton)	Kumar	Health	
	Infected with Gill Monoqeneans"			

55. 56.	"Kinetics of Systemic and Mucosal Immunity and Haematological Indices of <i>Catla catla</i> (Hamilton) Challenged with Gill Monogeneans" "Evaluation of Millettia pachycarpa (Benth.) Plant Extract as a Piscicide against Weed Fish"	Ms. Narind er Kaur Mr. Bhupen dra Chouri	Aquatic Animal Health Aquatic Animal Health	2017	
57.	"Effects of Anesthetic and Transportation Dose of Clove Oil and Tricaine Methanesu Ifonate (MS-222) on Physiological Responses of Rohu (Labeo ~ohita)"	Ms. Aramb am Ashwin i Devi	Aquatic Animal Health	2018	
58.	"Dietary Supplementation to Ameliorate the Effect of Waterborne Iron and Low pH Toxicity in Labeo rohita (Hamilton)"	Mr. C. Laltlan mawia	Aquatic Animal Health	2018	
59.	"Effects of Cordyceps militaris Spent Mushroom Substrate Based Nutraceutical Mixture on Labeo rohita (Hamilton, 1822) against Aeromonas hydrophilaInfection"	Ms. Wangk heimay um Malem nganbi Devi	Aquatic Animal Health	2019	
60.	"Effect of Feed Deprivation on Immuno-Hematological Responses and Resistance of Labeo rohita (Hamilton, 1822) during Induced Aeromonas hydrophila Infection"	Mr. Surajku mar Irungba m	Aquatic Animal Health	2019	
61.	"Effect of Oxytetracycline on Labeo rohita (HAMIL TON, 1822) Infected with Aeromonas hydrophila"	Mr. Manu Mog	Aquatic Animal Health	2019	
62.	Identification and Characterization of Virulence Potential of Aeromonas salmonicida.	Subha m Kumar Pradha n	Aquatic Animal Health	2021	 The isolated strain from aquatic environment found to be Aeromonas salmonicida subsp. salmonicida. It is pathogenic to Indian Major Carps. Isolate displayed presence of multiple virulent genes i.e. aerA, act, ast, alt, hlyA, lip, ela, and

					fstA. 4. The antimicrobial susceptibility pattern showed that isolate is highly sensitive to quinolones group of antibiotics.
63.	Effect of Externally Applied Certain antimicrobial Agents on Haematologiacal, Immunological and Biochemical Parameters in Labeo rohita Fingerlings	Mr. Lukes h Kumar Banjar e	Aquatic Animal Health (AAH)	2021	 This study showed the effectiveness of antimicrobial agents against <i>A. hydrophila</i> in <i>L. rohita</i>. The physiological responses of externally applied antimicrobial have shown immunomodulation in <i>L. rohita</i>. KMnO₄ treatment give better protection to rohu against <i>A. hydrophila</i> infection. Recommended dose of formalin and KMnO₄ was found to be 6.65 ppm and 0.289 ppm, respectively.
64.	Immunostimulatory Effect of Tea Leaf Extract on Labeo rohita Fingerlings Challenged with Aeromonas hydrophila	Mr. Sourab h Debba rma	Aquatic Animal Health (AAH)	2021	1. Green Tea Ethanolic extract showed best phytochemical and antioxidant properties. 2. GTEE boosted the immune system and conferred resistance against bacterial infection. 3. GTEE can be used as a potent immunostimulant and can be used as sustainable alternative

					prophylactic and
					therapeutic agents in
65.	Effect of Herbicide Glyphosate on	Ms.	Aquatic	2021	aquaculture. 1. Herbicide glyphosate
05.	Pathophysiogical Responses of	Khaid	Animal	2021	induces
	Labeo rohita	em	Health		haematological and
		Rabina	(AAH)		biochemical changes
		Chanu	,		in fish.
					2. Fish exposed to
					glyphosate shows
					more susceptibility to
					pathogens.
					3. Histopathology of
					liver shows liver
					degeneration and
					other undesirable
					hepatic changes.
66.	Characterization of Virulence	Ms.	Aquatic	2021	1. This study showed
	Potential of <i>Aeromonas veronii</i> and	Rajash	Animal		that both A. veronii
	A. media	ree	Health		and A. media were
		Devi	(AAH)		moderately virulent to
					Labeo rohita (the
					LD_{50} of A . veronii and
					A. media in Labeo
					rohita were 10 ^{6.8} and
					10 ⁷ cells/fish
					respectively).
					2. Both the isolates
					displayed phenotypic expressions of
					virulence factors and
					also had multiple
					virulence genes.
					3. A. veronii was more
					pathogenic than A.
					<i>media</i> in experimental
					condition, as it
					expressed more
					virulence related
					factors.
					4. The antimicrobial
					susceptibility pattern showed that both A .
					veronii and A. media
					is susceptible to
					is susceptible to

					aminoglycosides group of antibiotics.
		Agua	culture		
67. 68.	Effect of differenct dietary lipid sources in the reproductive performance of guppy (poecilia reticulata) Efficacy of un-boiled rice bran as	Mr. Preciou s Stone Suting Ms.	2012	Aquaculture Aquaculture	
	supplementary feed ingredient on growth performance and digestibility in minor carp, <i>cirrhinus reba</i> (Hamilton, 1822)	Shilpis hikha Gogoi			
69.	Studies on fish growth and feed utilization in an integrated <i>wolffia</i> arrhizal (I) – fish production system	Ms. Phanjo ubam Laksh mi Chanu	2012	Aquaculture	
70.	Effect of wolffia arrhiza (I.) Inclusion on fish flesh quality & water quality in a semi intensive culture system	Ms. Sampa Baidya	2012	Aquaculture	
71.	Evaluation of probiotic potentiality of lactobacillus fermentum and micrococcus luteus on gowth, survival and phusiolofical response of labeo bata finderlings	Ms. Gangm ei Ladiml u	2012	Aquaculture	
72.	Effect of different feeds on the growth, survival and reproductive performance of zebrafish, <i>danio rerio</i> (hamilton, 1822)	Mr. Jumli Karga	2013	Aquaculture	
73.	A comparative study on growth performance of common carp strains; (cyprinus carpio var. Communis and cuyprinus carpio var. Haemotopterus) as a candidate species under monoculture in Tripura	Mr. Kenned y Lamare	2013	Aquaculture	
74.	Comparative performance of migal, cirrhinus mrigala (Hamilton, 1822) and amur carp, cyprinus carpio haematipterus (martens, 1876) in carp polyculture system in Tripura	Mr. Hari Om Verma	2013	Aquaculture	
75.	Evaluation of wolffia meal as a local plant protein feed stuff for supplementary carp feed in NE region	Mr. Bhrigu mani Dewan	2013	Aquaculture	
76.	Evaluation of extruded floating and sinking fish feeds supplemented with fresh wolffia arrhiza (I.) In semi-	Mr. Biswaj yoti	2014	Aquaculture	

	intensive polyculture of carps	Bordol oi		
77.	Effect of processing methods on biochemical composition and utilization of taro corms for amur common carp, cvotinu: carpio	Ms. Arunim a Deka	2014	Aquaculture
78.	Evaluation of performance of silver barb, puntius gonionotus (bleeker) as an additional candidate species in polvculture of carps	Mr. Deisaul ungbe Pame	2014	Aquaculture
79.	Evaluation of dietary protein requirement of reba carp, cirrhinus reba (hamilton, 1822) fingerlings using semi- purified diet	Mr. Ajay Kumar Yadav	2015	Aquaculture
80.	Evaluation of dietary wo/ffia arrhiza meal as a subsfitize of fish meal for pengba (osteobrama be/angeri, valenciennes)	Mr. Ahanth em Rawat	2015	Aquaculture
81.	"Effect of dietary wolffia arrhiza and spirulina platensis on performance and pigmentation of botia Dario (hamilton, 1822)"	Ms. Silpika Gogoi	2016	Aquaculture
82.	"Interactive effects of stocking density and dietary protein level on growth performance of amur commoncarp (cyprinus carpio) under semi-intensive culturesystem"	Ms. Man Kumari Subba	2016	Aquaculture
83.	"Evaluation of tapioca tubers as local starch source in fish feed of osteobrama belangeri (valenciennes, 1844)	Mr.Ma nmoha nkumar	2016	Aquaculture
84.	"Effects of larval and fry stocking density on growth performance of butter catfish, ompok bimaculatus (bloch,1794)"	Mr. Satyajit Das	2016	Aquaculture
85.	"Standardisation of stocking density of spawn and fry of cirrhinus reba (hamilton, 1822) under semi-intensive culture system"	Mr. Naresh Raj Keer	2016	Aquaculture
86.	Growth evaluation of giant freshwater prawn, macrobrachium rosenbergii (de man) in biofloc system using different carbohydrate sources	Ms. Lalrem sangpui i	2016	Aquaculture
87.	"Evaluation of Optimum Dietary Protein Level for Fingerling Osteobrama belangeri (Valenciennes, 1844) using Semi Purified Diet	Ms. Nahakp am Surjoba la Devi	2017	Aquaculture
88.	"Standardization of Stocking Density	Ms.	2017	Aquaculture

	for Seed Rearing of Osteobrama	Atiya		
	belangeri (Valenciennes, 1844)"	Niyazi		
89.	"Evaluation of Mixed Feeding	Mr.	2017	Aquaculture
	Schedule using Artificial Feed and	Atul		
	Fresh Wolffia arrhiza for Osteobrama	Sinha		
	belangeri (Valenciennes, 1844)"			
90.	"Evaluation of Fresh Wolffia arrhiza	Mr.	2017	Aquaculture
	(L.) as Replacement of Artificial Feed	Nikhles		
	in Carp Polyculture System"	h		
		Ghritla		
		hre		
91.	"Evaluation of Different Feed	Ms.	2017	Aquaculture
7.1	Attractants on Seed Rearing	Priya		
	Performance of Ompok bimaculatus	Rawat		
	(Bloch,1794)"			
92.	"Effect of Stocking Density on	Mr.	2018	Aquaculture
	Growth Performance, Survival and	Alok		
	Production of Pabda, Ompok	Kumar		
0.0	bimaculatus(Bloch,1794)"	Jena	2010	
93.	"Effect of Ferti lization on Growth	Mr.	2018	Aquaculture
	Performance, Biochemical	Manoj		
	Composition and Nutrient Uptake	Kumar		
94.	Efficiency of Wolffia globosa (L.)" "Evaluation of Performance of Select	Mr.	2018	Aquaculture
94.	carps Under Semi-intensive	Rajku	2016	Aquacunuic
	Monoculture and Polyculture	mar		
	Systems"	Debarj		
		eet		
		Singh		
95.	"Effect of feeding select carp fry with	Ms.	2018	Aquaculture
	live Wolffia globosa (L.) and	Amrita		
	formulated feed on survival and	Pradha		
	growth performance under semi-	n		
0.5	intensive rearingsystem"	24	2010	A 10
96.	"Effect of Photoperiod and Light	Ms.	2018	Aquaculture
	Intensity on Egg Hatching and Larval	Kalpan		
	Rearing Performance of Ompok bimaculatus (Bloch, 1794)"	a Aramb		
	omaculatus (Diocii, 1/94)	am		
97.	Interactive Effects of Stocking	Ms.	2019	Aquaculture
/ / ·	Density and Water Depth on Growth	Purnap	1 - 2	
	Performance of pengba, Osteobrama	riya		
	belangeri (Valenciennes, 1844)	Suara		
00	Evaluation of Semi-intensive	Ma	2010	A cure cultures
98.	Polyculture System of Pengba	Mr. Ritesh	2019	Aquaculture
	(Osteobrama belangeri) and Pabda	Chandr		
	(Ompok bimaculatus)	avanshi		
	(Omport omiculatus)	avansin		
		1	l	

99.	Effect of Dietary L-tryptophan on Cannibalism, Growth and Survival of Ompok bimaculatus (Bloch, 1794) PostLarvae	Ms. Anami ka Debnat h	2019	Aquaculture	
100.	Effect of protein/lipid ratios in diets on growth, feed utilization and flesh quality of Ompok bimaculatus(Bloch,1794)	Mr. Rohit Kumar	2019	Aquaculture	
101.	Effect of dietary L-tryptophan on maturation and Gonadotropin- Releasing Hormone (GnRH) geneexpression in Silver barb, Barbonymus gonionotus (Bleeker, 1849)	Mr. Shubha m Sahu	2019	Aquaculture	
102.	Effect of Protein/Lipid Ratios in Diets on Growth, Feed Utilization and Flesh Quality of Ompok bimaculatus (Bloch,1794)	Mr Rohit Kumar	2019	Aquaculture	
103.	Effect of Stocking Density on Overall Growth and Physiological Function of Ompok bimaculatus in Biofloc System	Ms. Snigdh a Suchar ita Majhi	2021	Aquaculture	1.Stocking density strongly influenced growth and health status of <i>O. bimaculatus</i> under biofloc system, and a stocking density of 0.5g L ⁻¹ is found optimum.
104.	Interactive Evaluation of Olive Barb (Systomus sarana) as Alternative to Rohu (Labeo rohita) and Mrigal (Cirrhinus mrigala) in Carp Polyculture System	Ms. Mutu m Deepti	2021	Aquaculture	1.Replacement of mrigal with olive barb, an indigenous fish @ ratio of 1:2.6 (one mrigal replaced with 2.6 olive barb) significantly enhanced the net fish yield (ca. 45%) without impacting the feed utilization

					efficiency.
	Comparative Efficacy of Selected Gonadal Inhibiting Plant Extracts on Growth and Physiological Consequences in Silver Barb,Barbonymus gonionotus (Bleeker,1849)	Mr. Upend ra Suman	2021	Aquaculture	1. Enhanced growth with subsequent reduction in ovarian volume achieved in early maturing fishes like Silver barb, Barbonymus gonionotus through dietary pawpaw seed (PS) supplemented diets. 1. The
100.	Reproductive Performance of Devario aequipinnatus (McClelland,1839)	Khusb u Samal	2021		administration of dietary melatonin in Devario aequipinnatus @ 50mg 100g-1 feed has improved reproductive performance in terms of attainment of maturation and growth.
		Fisheries	s Extension	ı	
107.	Utilization of information sources among fish farmers in Faizabad District of Uttar Pradesh	Mr. Arun Kumar Yadav	Fishries Extensio n	2012	
	Profile study of fishery based self help groups in West Tripura District of Tripura	Mr. Narend ra Kumar Verma	Fisherie s Extensio n	2013	
109.	Documentation and rationality analysis of indigenous technical knowledge (itk) on fisheries in	Ms. Rajita Devi	Fisherie s Extensio	2013	

	Nagaon District, Central Assam		n		
110	Adoption of recommended composite	Mr.	Fisherie	2013	
110.	fish culture practices by fish farmers	Sarbes	S		
	in Kamrup District of Assam	war	Extensio		
		Kachar	n		
		i			
111.	Participation of women in fisheries	Mr.	Fisherie	2014	
	activities with reference to	Waikh	s		
	empowerment in bishnupur district,	om	Extensio		
	manipur	Tomthi	n		
	1	nnganb			
		a			
		Meetei			
112.	Assessment of training needs of fish	Mr.	Fisherie	2014	
	farmers in bishnupur district of	Bishorj	s		
	manipur	it	Extensio		
		Hijam	n		
113.	Assessment of effectiveness of fishery	Mr.	Fisherie	2015	
	training programmes through	Tsering	S		
	perception of kvk trainees in east	Tashi	Extensio		
	karnenq district of arunachal pradesh	Thungo	n		
		n			
114.	"Ornamental fish marketing and	Ms.	Fisherie	2016	
	consumers' preference behaviour: a	Bonani	S		
	study in west tripura"	Laskar	Extensio		
			n		
115.	"Impact of Fishery Based Self-Help	Ms.	Fisherie	2017	
	Groups on Empowerment of Rural	Indrani	S		
	Women in Jashpur District	Sah	Extensio		
	ofChhattisgarh"		n		
116.	"Influence of MGNREGA on	Mr.	Fisherie	2017	
	Aquaculture: A Case Study in West	Rajsum	S		
	Tripura"	er	Extensio		
	WG 07117	Ijardar	n	2015	
117.	"Status of Fish Based Integrated	Mr.	Fisherie	2017	
	Farming in West Tripura: A Micro	Nongth	S		
	Level Study"	obam	Extensio		
410	UD 11 PILE I G	3.6	n E: 1	2017	
118.	"Paddy cum Fish Farming System of	Mr.	Fisherie	2017	
	Assam: A Pattern Analysis"	Rupan	S		
		Pegu	Extensio		
110	"Fishers' Risk Perception and	Mr.	n Eighoria	2017	
119.		Mudad	Fisherie	2017	
	Adaptation Strategies to Climate Change in Coastal Pagion of Southern		S Extensio		
	Change in Coastal Region of Southern Odisha"	a	Extensio		
120	"Communication Behavior of Fish	Mr.	n Fisherie	2018	
120.				2010	
	Farmers in West Tripura: A Case	Kashya	s Extensio		
	Study	p	EXICIISIO		

		Borah	n		
121.	"Adoption of Scientific Fish Farming of Pengba (Osteobrama belangeri) by the Fish Farmers in the Valleys of Manipur"	Mr. Oinam Naresh Khuma n	Fisherie s Extensio n	2018	
122.	"An Empirical Study on Fishermen's Cooperative Societies in Tripura"	Mr. Chakra pani Pegu	Fisherie s Extensio n	2018	
123.	Perception of Fishers on Fish Diversity and its Conservation in Dumboor Reservoir of Tripura	Mr. Somlan g Tesia	Fisherie s Extensio n	2019	
124.	A Study on MGNREGS-Aquaculture Convergence in Tripura	Ms. Toko Yemin	Fisherie s Extensio n	2019	
125.	Linkage among Researchers, Extension Personnel & Fish Farmers in the Valleys of Manipur	Ms. Sajina	Fisherie s Extensio n	2019	
126.	Information Utilization Pattern of Fish Farmers of Tripura through Mobile Based Agro-Advisory System (Matysa Varta)	Mr. Ram Kumar Kurmi	Fisherie s Extensi on (FEX)	2021	1.Youth-oriented strategy is required to aware and sensitize them about MBAS and its' benefits and include them in scientific culture practices by providing necessary assistance from MBAS. 2.Inclusion of more tribal farmers in Matsya Varta requires more in-depth ethnocultural studies to customize MBAS according to the demand of the tribal farmers. 3.Customization is required in MBAS to address the issue of timely dissemination of comprehensive information to the farmers to make the advisories more credible

127.	Status of Women Empowerment through Fisheries vis-a-vis Agricultural and Animal Husbandry based Activities of Self-Help Groups in Tripura	Ms. Uma	Fisherie s Extensi on (FEX)	2021	1.Overall women's empowerment index was medium. 2.Lack of freedom to take decisions were the major constraints faced by respondents of SHGs.
128.	A Study on Knowledge Level of Fisheries Extension Professionals on Usage of Information and Communication Technologies (ICTs) in Tripura	Mr. Chand rashek har	Fisherie s Extensi on (FEX)	2021	1. Thus, a meticulous and comprehensive strategy needs to be adopted in state department of fisheries for the inclusion and efficient utilization ICT mediated fishery extension system in the state to fulfill the information demand of the fish farmers in the state. 2. Young professionals are needed in the department to cater the extent services up to great extent and inclusions of fresh bloods into the fisheries department may change the scenario of ICT uses drastically.
129.	A Study on Effects of COVID-19 on Fish Farmers' Livelihood in Tripura	Mr. Raja Debna th	Fisherie s Extensi on	2021	1.An exclusive measurement tool was developed by adopting a standard methodology for measuring the effects of COVID-19 on fish farmers' livelihood. 2.The outcome would help in determining the difficulties that fish farmers faced, and their actual needs to restore fish production, and ancillary activities during and after COVID-19

				outbreak.
		Fish Genetic	rs & Rraad	ding
130.	Identification of some selected isoforms of aquaporin gene in common carp (cyprinus carpio) and their expression analysis during reproduction	Mr. Shongsir Joy Monsang	Fish Genetics & Breedin g	2015
131.	Molecular characterisation of sifamide and its receptor in macrobrachiurn rosenberqii (de man, 1879)"	Ms. Laishram Galaxy	Fish Genetics & Breedin g	2016
132.	"Expression profiling of gonadotropin – releasing hormone (gnrh) gene in puntius onionotus (bleeker, 1850) durin different reproductive stages"	Ms. Asem Lembika Devi	Fish Genetics & Breedin g	2016
133.	"Expression analysis of gonadotropin releasing hormone receptor genes (gnrh-r) in puntius gonionotus (bleeker, 1850) durinq different reproductive staqes"	Mr. Sumit Kumar	Fish Genetics & Breedin g	2016
134.	"Identification of aquaporin-1, 4 and 11 genes in cyprinus carpio (Iinnaeus, 1758) and their expression analysis durino reproduction"	Mr. Biswaranja n Rath	Fish Genetics & Breedin g	2016
135.	"Molecular Characterization of Enzymes Involved in DNA Methylation and Histone Modification in <i>Macrobrachium</i> rosenbergii (DE MAN, 1879)"	Ms. Papuli Adhikary	Fish Genetics & Breedin g	2017
136.	"Characterization and Expression of GnlH Gene in <i>Clarias</i> batrachus (Linnaeus, 1758)"	Ms. Ningthouja m	Fish Genetics & Breedin g	2017
137.	"Molecular Characterization and Expression Profiling GnRH III gene in <i>Barbonymus gonionotus</i> (Bleeker, 1850)"	Mr. Rual Thantluang a	Fish Genetics & Breedin g	2017
138.	"Molecular Characterization of Kisspeptin Gene and their Expression during Reporductive Cycle in <i>Barbonymus gonionotus</i> (Bleeker, 1850)"	Mr. Sudhakar Bisen	Fish Genetics & Breedin g	2017
139.	"Identification of Dopamine Receptor in <i>Clarias batrachus</i>	Ms. Angam Panor	Fish Genetics	2017

	(Linnaeus, 1758) and its		& Drag din		
	Expression during Different Reproductive Stages"		Breedin g		
140	"Characterization and Expression	Mr.	Fish	2018	
140.	of CYP17 Gene in Clarias	Maradode	Genetics	2010	
	batrachus (Linnaeus, 1758)"	Jaywant	&		
	,	Raghunath	Breedin		
		-	g		
141.	"Molecular Characterization and	Ms.	Fish	2018	
	Expression of Vitellogenin Gene	Snehalata	Genetics		
	in Silver Barb, Barbonymus	Mohanty	&		
	gonionotus (Bleeker, 1850)"		Breedin		
1.40	"Characterization and Evangacion	Mr.	g Fish	2018	
142.	"Characterization and Expression of csf1r Gene in Botia dario	Parthasarat	Genetics	2018	
	(Hamilton, 1822)"	hi Tripathy	&		
	(Hailliton, 1822)	in Tripatily	Breedin		
			g		
143.	"Characterization and Expression	Ms.	Fish	2018	
	Analysis of Brdt Gene in Clarias	Khageshwa	Genetics		
	batrachus (Linnaeus, 1758)"	rijolhe	&		
			Breedin		
			g		
144.	•	Ms. Prerna	Fish	2019	
	Analysis of Male-Biased Genes	Dobriyal	Genetics		
	Sox9 and Dmrt1 in Ompok		and		
	bimaculatus (Bloch,1794)		Breedin		
1.45	Role of Dopamine Receptors on	Mr	g Fish	2019	
143.	Clarias magur (Linnaeus, 1758)	Devendra	Genetics	2019	
	Reproduction	Kumar	and		
	reproduction		Breedin		
			g		
146.	Development of Somatostatin	Mr	Fish	2019	
	(SST) Targeted siRNA Construct	Bhubanend	Genetics		
	in Labeo rohita (Hamilton, 1822)	ra	and		
		Prasad	Breedin		
4	Cl	Acharya	g	2010	
147.	Characterization and Expression	Mr Shrish	Fish	2019	
	of GnRH Gene in Botia dario	Chandraya	Genetics		
	(Hamilton,1822)	dav	and Breedin		
			g		
148.	Comparative Karyotyping of	Mr.Subrata	Fish	2019	
	Somatic and Gametic Cells of	Rudrapaul	Genetics		
	Osteobrama belangeri	1	and		
	(Valenciennes, 1844) for Sex		Breedin		
	Chromosome Identification		g		
149.	Expression profiling of stress	Ms.	Fish	2021	1 Stress gene show upregulated
	genes during induced breeding	Kalpita	Genetic		in ovatide administration as

150.		Tripathy Mr.	s & Breedin g (FGB)	2021	compared to administration of pituitory extract during induced breeding in <i>Cyprinus carpio</i> (common carp) (Linnaeus, 1758 1 Characterization of GC rick
	Simple Sequence Repeat and Polymorphism in <i>Osteobrama</i> belangeri (Valenciennes, 1844)	Shubham Kashyap	Genetic s & Breedin g (FGB)		simple sequence repeat and polymorphism in <i>Osteobrama belangari</i> (Valenciennes, 1844) exhibited SSRs can be used for estimating population genetics parameter in the sample collected from wild and culture <i>Osteobrama belangari</i> .
151.	Characterization of solute carrier genes and their expression profiling in gonad of <i>Cyprinus carpio</i> (Linnaeus, 1758)	Ms. Shelke Jayashri Sarjerao	Fish Genetic s & Breedin g (FGB)	2021	1. Downregulation of <i>SLC</i> gene after spermiation or ovulation suggest its role in controlling water and other solute movement across the cell membrane during spawning in common carp
152.	Docking and molecular dynamics simulation of dopamine receptor 2 (DRD2) in <i>Cyprinus carpio</i> (Linnaeus, 1758)	Mr. Gautam Kumar	Fish Genetic s & Breedin g (FGB)	2021	1 Docking analysis revealed high binding infinity of Isotoxin with DRD2 followed by Oxytocin. Invivo testing show oxytoxin significantly down regulate the expression of <i>D2R</i> and <i>D1R</i> in <i>Cyprinus carpio</i>
153.	Mining and validation of "AT" rich simple sequence repeat (SSR) marker in <i>Osteobrama belangeri</i> (Valenciennes, 1844)	Mr. Dibyajyoti Sahoo	Fish Genetic s & Breedin g (FGB)	2021	1.Mining and validation of "AT" rich simple sequence repeat (SSR) marker in Osteobrama belangari (Valenciennes, 1844) revealed higher allele polymorphysm and heterozygosity in culture sample indicate the result of mixing of two isolated population in Osteobrama belangari.
154.	Identification and expression of genes for omega 3 fatty acid biosynthesis in olive barb (Systomus sarana)	Ms. Kashti Prerna Deorao	Fish Genetic s & Breedin g (FGB)	2021	1.Studied on identification and expression of genes for Omega 3 fatty acid biosynthesis in Olive barb (<i>Systomus sarana</i>). Resveratrol potentially induced endogenous fatty acid

					synthesis and resulted in omega 3 fatty acid elevation.
155.	Molecular characterization of the sex determination <i>Dmrt1</i> in <i>Clarius magur</i> (Hamilton, 1822)	Mr. Solomon Kamei	Fish Genetic s and Breedin g(FGB)	2021	Dmrt1 gene have possible key role in sex determination of Clarius magur
		Figh owing	g Dagaywaa		
156.	"Population characteristics and stock assessment of ana bas testudineus (bloch, 1792) and mystus bleekeri Management(day, 1877) in rudrasaqar lake, tripura"	Mr. Ashish Kumar Maurya	Fisherie s Resourc e	2016	
157.	"Application of osteology in taxonomic validation of the species under the genus mystus (scopoli, 1777) Management distributed in north-eastern india"	Mr. Amit Kumar	Fisherie s Resourc e	2016	
158.	"Taxonomic confirmation of species under the genus macrobrachium (spence bate, 1868) in north eastern Management states of india"	Ms. Tako Yame	Fisherie s Resourc e	2016	
159.	"Otolith shape analysis for taxonomic validation of the species under the genus puntius (hamilton, 1822) Management distributed in north-eastern india"	Mr. Khanindra Bhuyan	Fisherie s Resourc e	2016	
160.	"Mouth Dimension and Architecture in Relation to Food and Feeding Habits of Some Cyprinid Fishes of GEORGE Tripura"	Ms. Sneha Mol	Fisherie s Resourc e Manage ment	2017	
161.	"Molecular Taxonomy and Phylogenetics of Species under the Genus <i>Osteobrama Heckel</i> , 1842 in India"	Ms. Anjali Pushp	Fisherie s Resourc e Manage ment	2017	
162.	"Validation of Taxonomic Status of the Species under the Genus Chagunius (Smith, 1938) in India applying Osteological and Molecular Tools"	Mr. Yogesh Dan Gal Cau/238- F/11 (B)	Fisherie s Resourc e Manage ment	2017	
163.	"Biometric Studies of Labeo (Cuvier, 1816) Species from	Mr. Sachin Pandit	Fisherie s	2018	

	Tripura, India"		Resourc		
	•		e		
			Manage		
			ment		
164.	"Validation of Species under the	Mr.	Fisherie	2018	
	Genus Barilius (Hamilton, 1822)	Ansuman	S		
	from North Eastern States of India	Panda	Resourc		
	through Morphometric Traits and		e		
	Molecular Tools"		Manage		
	10.5		ment	2010	
165.	"Mouth Dimension of Some	Ms. Kamel	Fisherie	2018	
	Ornamental Fishes in Relation to	Lanthaimei	S		
	Their Food and Feeding Habits"	lu	Resourc		
			e Monogo		
			Manage ment		
166	"Biosystematic Study of the	Mr.Kamles	Fisherie	2018	
100.	Genus Bangana (Hamilton, 1822)	h	S	2010	
	from North-Eastern India"	Kumaryada	Resourc		
	Tom North Eastern main	V	e		
		·	Manage		
			ment		
167.	"Taxonomy and Phylogeny of the	Mr.	Fisherie	2018	
	Cyprinid Fish genus	Sanjenbam	S		
	Neolissochilus (Rainboth, 1985)	Bidyasagar	Resourc		
	from North-Eastern India"	Singh	e		
			Manage		
			ment		
168.	Taxonomic Validation of the	Mr	Fisherie	2019	
	Species under Family Ambassidae	Debashis	S		
	from Northeast India	Jena	Resourc		
			e		
			Manage		
1.00	Food and Fooding Habits of Co	Ma	ment	2010	
169.	Food and Feeding Habits of Some Selected Ornamental Fishes of	Ms.	Fisherie	2019	
	Tripura in Relation to their Mouth	Sengbira K. Sangma	s Resourc		
	Morphometry	Jangma	e		
	To phonou y		Manage		
			ment		
170.	Taxonomic Validation of the	Mr.	Fisherie	2019	
	Species under the Cyprinid fish	Lekininroy	S		
	Genus Schizothorax Heckel, 1838	Dann	Resourc		
	from North-Eastern India		e		
			Manage		
			ment		
171.	Systematic Study of Some Barbs	Mr Arun	Fisherie	2019	
	from Tripura	Kumar	S		
			Resourc		
			e		

			Manage ment		
172.	Food, Feeding Habits and Reproductive biology of Striped spiny eel, <i>Macrognathus pancalus</i> (Hamilton, 1822) in Tripura.	Ms. Wangkhei rakpam Gaitri Chanu	Fisherie s Resour ce Manage ment	2021	1.Life History studies of Macrognathus puncalus showed carnivorous feeding habits, aquatic insects found the most preferred food items. 2.Predominance of Females Macrognathus pancalus than males throughout the studied period was observed.
173.	Food, Feeding Habit and Reproductive biology of <i>Mystus tengra</i> (Hamilton ,1822)	Ms. Srabanti Majumder	Fisherie s Resour ce Manage ment	2021	1.Life history studies on <i>Mystus tengara</i> showed RLG values strongly correlating with the carnivorous feeding habit and its value varies with difference in size. 2.Further, the feeding intensity indicated by Gastro-somatic index (Ga.SI) revealed low Ga.SI value during June and highest in March
174.	Population Characteristics and Patterrns in Fishery of Amblypharyngodon mola (Hamilton, 1822) and Mystus tengra (Hamilton ,1822) in Rudrasagar Lake- A Ramsar Site in North-Eastern India	Ms. B. Antrose Preethi	Fisherie s Resour ce Manage ment(F RM	2021	1. Both <i>M. tengara</i> and <i>A. mola</i> exhibited allometric growth pattern in Rudrasagar Lake. 2. Fishing mortality was found to be twice than the natural mortality for both the species. It indicated high level of exploitation of both the species in the Lake. 3. Exploitation rate, E is greater than Emax, further showing heavy level of exploitation of both the fish species in Rudrasagar Lake.
175.	Spatio-temporal Variation of Plankton Diversity along Lower Stretches of River Gomati, Tripura	Ms. Purnabhad ra Pal	Fisherie s Resour ce Manage ment(F RM	2021	1.Plankton diversity as an indicatory of habitat quality was studies at the lower Stretches of River Gomati, Tripura. A total of 40 phytoplankton and 12 zooplankton genera have been identified from samples collected from three sites over four seasons.

176.	Biology of Anabas testudineus (Bloch,1792) of Rudrasagar Lake- A Ramsar site	Mr. Vidyabho oshan	Fisherie s Resour ce Manage ment	2021	2. Chlorophyceae (26 genera) dominated the phytoplankton population followed by Bacillariophyceae (8 genera), Cyanophyceae (5 genera), Euglenophyceae (2 genera) and Cosmpsopogonophyceae (1 genera). 1. Life history parameters of Anabas testudineus showed that the size group of 9 -10 cm TL and 17-18 cm TL showed lowest and highest RLG values respectively, indicating carnivorous feeding habit of this species. GSI and HSI values were found to be inversely associated, which indicated that energy is released from the liver into the ovary. Mean GSI value started to increase gradually from January and reached a
					maximum value in May, indicating that peak spawning season of this species is May.
		Fish Bio	L technology	<u> </u> V	season of this species is may.
177.	Effect of Lighting Condition on Coloration in Danio rerio (Zebra fish)	Ms. Riya Ragini Kujur	Fish Biotech nology(FBT)	2021	1.The implementation of photoperiod and light exposure showed enhancement in coloration in zebra fish with various effects and can be manipulated for better patterns
Ph.	D.				
S1. no.	Title of the thesis	Name of the student	Major subject	Year of completi on	Outcome of the research work
1.	"Immune Effector Activities of Asparagus racemosus in Labeo rohita (Hamilton,1822)"	Shongsir Joy Monsang	Aquatic Animal Health (AAH)	2021	1. It can be inferred that A. racemosus ethanolic root extract (AREE) can be used as an immunostimulant in aquaculture and has a potential to provide resistance against A. hydrophila infection in L. rohita. 2. Dietary

		T	ı	ı	
					administration of AREE showed an ameliorating effect in terms of activating the immune-biochemical responses and increasing the resistance of rohu against <i>A. hydrophila</i> infection. The results collectively suggest that the immunostimulatory effect of AREE was most pronounced at a dietary supplementation of 100 mg kg ⁻¹ diet. Moreover, AREE at a concentration of 12.5 µg ml ⁻¹ in the final vaccine preparation showed potent adjuvanticity in significantly augmenting the vaccine efficacy.
2.	"Efficacy and Pharmacokinetics of Herbal Nutraceutical based Medicated Feed of Miconazole Nitrate in Labeo rohita (Hamilton) Fingerllings against Fungal Infection"	Mukta Singh	Aquatic Animal Health (AAH)	2021	1. The single oral administration of three different sub-lethal doses of MCZ revealed rapid absorption with immediate detection of drugs. The selected aqueous and ethanolic extract of herbal nutraceutical in combinations with drug MCZ give highest scavenging and anti-fungal activities.
3.	"Isolation, Characterization and Biocontrol Efficacy of Protential Probiotic and Bacteriophage against Aeromonas hydrophila Infection in Labeo rohita"	Md. Idrish Raja Khan	Aquatic Animal Health (AAH)	2021	1. It can be inferred that <i>B. amyloliquefaciens</i> COFCAU_P1 and AvP-2 can be potential probiotics and bacteriophage species. 2. The invitro test, safety assay and genetic assessments delineated the potential of <i>B. amyloliquefaciens</i> as a candidate probiotic species. The phage Avp-2 was most potent in terms of lytic capacity, satisfactory cross infectivity levels, stability and other phage fitness.

COLLEGE OF HORTICULTURE & FORESTRY, PASIGHAT, ARUNACHAL PRADESH

	M.Sc. Horticultur	re			
Sl. No.	Title of theses	Name of Student	Major Subject	Year	Outcome
		Plantation T	echnology		
1.	Standardisation of nursery techniques for early growth and performance of <i>Phoebe goalparensis</i> Hutch. under Eastern Himalayas.	Ms.Lapyns uk Jana	Plantatio n Technolo gy	2017	
2.	Standardisation of nursery techniques and performance of <i>Micheliachampaca</i> Linn. under Eastern Himalayas.	Mr.Nepuni Rinaldi	Plantatio n Technolo gy	2018	
3.	Effect of seed treatments and standardization of potting media for early outplanting in <i>Canariumstrictum</i> Roxb. under Eastern Himalayas.	Mr.Fullmo on Puwein	Plantatio n Technolo gy	2019	
4.	Population status and nursery production of <i>Heritieramacrophylla</i> Wall.under Eastern Himalayas.	Mr. Guruariba m Nishanta Sharma	Plantatio n Technolo gy	2019	
		Agrofo	restry	1	
5.	Carbon sequestration potential of different landuse systems under East Siang District, Arunachal Pradesh.	Mr. Royal L. Mihriemat e	Agrofore stry	2019	
		Vegetable			
6.	Studies on variability components and genetic parameters in Potato (<i>Solanum tuberosum</i> L.) under foot hills of Arunachal Pradesh	Shiv Mangal Singh	Vegetable Science	2011	
7.	Studies on genetic variability in Tomato (<i>Solanum lycopersicum</i> Child.) under foot hills of	Teibormiki Challam	Vegetable Science	2011	

	Arunachal Pradesh				
8.	Studies on genetic variability in turmeric (<i>Curcuma longa</i> L.) under foot hills of Arunachal Pradesh	Sangja Khandu Thungon	Vegetable Science	2011	
9.	Studies on genetic variability in Ginger (<i>Zingiber officinale</i> Rosc.) under foot hills of Arunachal Pradesh	Nyaken Padu	Vegetable Science	2012	
10.	Assessment of genetic diversity in Taro [Colocasia esculenta (L.) Schott]	Huidrom Supriya Devi	Vegetable Science	2012	
11.	Stability anlysis for tuber yield and its components in Potato (<i>Solanum tuberosum</i> L.)	Nellisha Ngoruw Moyon	Vegetable Science	2012	
12.	Genetic diversity and seed protein electrophoresis in chilli (Capsicum annuum L.)	Tasso Yatung	Vegetable Science	2012	
13.	Studies on genetic variability in Snapmelon (<i>Cucumis melo</i> L. Var. momordica) through physicochemical traits and seed protein profiling	Venkata Ramana Muddarsu	Vegetable Science	2013	
14.	Stability Analysis for yield and its componebts in Turmeric (<i>Curcuma longa</i> L.)	Arambam Sneha Devi	Vegetable Science	2013	
15.	Assessment of genetic variability through morphological traits and seed protein profiling in Ridge Gourd (<i>Luffa acutangula</i> (Roxb.) L.)	Uzma Khatoon	Vegetable Science	2014	
16.	Screening of Coupea [(Vigna unguiculata (L.) Walp.] genotypes for Aluminium toxicity	Jitendra Kumar Kushwaha	Vegetable Science	2014	
17.	Screening of Tomato (Solanum lycopersicum Child) genotypes for yield and quality attributes under foot hills of Arunachal Pradesh	Kuldeep Kumar Bhargav	Vegetable Science	2015	
18.	Studies on combining ability and heterosis in Tomato (<i>Solanum lycopersicum</i> Child) for yield and quality attributing traits	Sanket Kumar	Vegetable Science	2015	
19.	Studies on grafting in Brinjal (Solanum melongena L.) for yield and quality attributes	B. Ashok Kumar	Vegetable Science	2015	
20.	Effect of biofertilizers on growth and yield of Cowpea [(Vigna unguiculata (L.) Walp] var. Kashi Kanchan under foot hills of Arunachal Pradesh	Mohamma d Arshad Nadeem	Vegetable Science	2015	
21.	Response of Capsicum (Capsicum	Salsara S.	Vegetable	2015	

	T _	I	l		
	annuum L. var. grossum) to	Sangma	Science		
	different levels of spacing and				
	training under polyhouse condition				
22.	Studies on nutritive and anti-	Ayang	Vegetable	2016	
	nutritive indices of important	Siram	Science		
	underutilized leafy vegetables of				
	North east region				
23.	Genetic Variability and correlation				
-5.	studies in King Chillies(Capsicum				
	Chinense Jacq.)under controlled	Ephilo	Vegetable		
	condition	Mena	Science	2016	
24.	Studies on genetic diversity and	Vanlalnunp	Vegetable	2016	
24.	seed protein profiling in brinjal	uia	Science	2010	
		uia	Science		
2.5	(Solanum melongena L.)	37.1.1	37 . 11	2017	
25.	Evaluation of Dolichos bean	Mohd	Vegetable	2017	
	[Lablab purpureus (L.) Sweet]	Talha	Science		
	genotypes against Aluminium	Ansari			
	toxicity				
26.	Studies on nutritive and anti-	P Mary Bui	Vegetable	2017	
	nutritive components of important		Science		
	underutilized perennial vegetables				
	of Arunachal Pradesh (North East				
	region of India)				
27.	Studies on genetic diversity among	Dhiman	Vegetable	2017	
	indigenous landraces of Cucumber	Chakrabort	Science		
	(Cucumis sativus L.) of North	у	Sololiso		
	Eastern India through	3			
	morphological traits and seed				
	protein profiling				
20	Studies on genetic variability on	M.M.	Vegetable	2018	
28.	•			2016	
	Indian bean [Lablab purpureus (L.)	Shulee	Science		
20	Sweet]	Ariina	** 11	2010	
29.	Effect of NPK on growth, yield and	Oyimang	Vegetable	2018	
	quality of hybrid capsicum	Ngupok	Science		
	(Capsicum annuum L. Var.				
	grossum) under protected condition				
30.	Studies on genetic diversity among	Md.	Vegetable	2018	
	indigenous landraces of pumpkin	Ramjan	Science		
	(Cucurbita moschata Duch. Ex Poir)				
31.	Studies on Genetic variability in	Tabalique	Vegetable	2018	
	Garden pea (<i>Pisum sativum</i> L.)	Yumkhaiba	Science		
	using morphological traits and seed	m			
	protein profiling				
32.	Integrated nutrient management	Sudeshna	Vegetable	2019	
] 52.	studies on growth, yield and quality	Kharga	Science	2017	
	of Cucumber (<i>Cucumis sativus</i> L.)	Kiiaiga	Science		
22	under protected condition	Doleilo	Vacatalata	2010	
33.	Effect of organic manures and	Pekila	Vegetable	2019	
	biofertilizers on growth, yield and	Bhutia	Science		
	quality of edible podded pea (Pisum				

	sativum var. macrocarpom) var. Arka Apoorva				
34.	Studies on genetic variability, heritability and genetic advance in Brinjal (Solanum melongena L.) genotypes	Kalom Tasing	Vegetable Science	2019	
35.	Studies on effect of spacing and nutrient management on King chilli (<i>Capsicum chinense</i> Jacq.) grown under protected conditions	Akhoki G Shimray	Vegetable Science	2019	
36.	Effect of Foliar application of micronutrients on growth, yield and quality of potato (<i>Solanum tuberosum</i> L.)	Mumtak Miyu	Vegetable Science	2019	
37.	Integrated nutrient management studies on growth, yield and quality of Tomato (<i>Solanum lycopersicum</i> L.) under protected conditions	Kavyashree B	Vegetable Science	2020	
38.	Study of genetic variability, correlation and path analysis in leaf mustard (<i>Brassica juncea</i> L. Czern & Coss) of North East Hill region of India	Toto Tamut	Vegetable Science	2021	Correlation studies indicated that biological yield was positively and significantly correlated vegetative and flowering parameters indicating the importance of these traits in selection for yield. Path analysis revealed that maximum positive direct effect on biological yield per plant was imposed by leaves weight per plant, stem weight per plant at 50% flowering, days to first harvest, leaf area and number of leaves per plant up to flowering stage at both phenotypic and genotypic level.
39.	Study on Heterosis for Yield and Quality Attributing Traits in Cherry tomato (Solanum lycopersicum L. var cerasiforme (Dunnal) A. Gray).	Navya K.R	Vegetable Science	2021	It can be concluded from the present studies that genotype 7, genotype 10, genotype 4, genotype 9 appeared superior w.r.t. GCA effect and mean performance and these parents could act as effective donor for future breeding programme. The hybrids G2xG7, G3xG4, G1xG10, G9xG10, G1xG9 and G4xG6 were superior based on SCA effects, mid parent and better parent heterosis and these hybrids have potential for

					commercial future use.
40.	Effect of Spacing and Organic Manure on Growth, Yield and Quality of Rakkyo (<i>Allium chinense</i> G. Don) under Foothills of Arunachal Pradesh	L. Mashine	Vegetable Science	2021	The outcome of the studies revealed that a spacing of 15cm x 10 cm and application of organic manure (FYM) @ 25t/ha may be recommended along with repeated trials for Rakkyo (Allium chinese) for Pasighat conditions.
41.	"Effect of different levels of drip irrigation on growth, yield and quality of red cabbage (<i>Brassica oleraceae</i> L. var. <i>capitata</i> f. rufra) under mulch and non-mulch condition".	Shweta Yadav	Vegetable Science	2022	The present studies concluded that treatment T5 (100 % CPE with drip irrigation under mulch) is recommended for better growth and yield of red cabbage under protected conditions.
42.	"Influence of Lime and Boron on the Performance of Brocoli (<i>Brassica oleracea</i> L. var italica Plenck) under protected condition."	Pura Nani	Vegetable Science	2022	The outcome of the studies revealed that T7 (2500 kh lime/ha +0.3% borax as foliar spray) is the most suitable treatment combination for best growth, yield and quality in broccoli under protected cultivation.
43.	"Influence of Lime and Boron on the Performance of Brocoli (<i>Brassica oleracea</i> L. var italica Plenck) under protected condition."	Pura Nani	Vegetable Science	2022	The outcome of the studies revealed that T7 (2500 kh lime/ha +0.3% borax as foliar spray) is the most suitable treatment combination for best growth, yield and quality in broccoli under protected cultivation.
44.	Screening of Brinjal Genotypes of North East India against Bacterial Wilt Using SSR Markers	Tasso Annu	Vegetable Science	2021	The present studies concluded that amongst the 22 brinjal genotypes, CHFB-22 and CHFB-29 was found nearer to resistant check varieties 'Arka Nidhi' and 'Arka Keshav' under major cluster I and also CHFB-33 appeared separately in major cluster I sub cluster IA-IA, grouped under resistant and these three lines can be utilized for improvement through breeding
45.	Studies on Effect of Spacing and Nutrient Management on King Chilli (<i>Capsicum chinense</i> Jacq.) grown under Protected Condition.	A. Gaitri Devi	Vegetable Science	2021	The outcome of the study revealed that a spacing of 60 cm × 90 cm and T ₇ (NAA @ 20 ppm + Boron @ 50 ppm) was found to be the best

46.	Studies on Genetic Variability, Heritability and Genetic Advance in French Bean (<i>Phaseolus vulgaris</i> L.) genotypes.	Mr. Karik Gammeng	Vegetable Science	2021	treatment combination for controlling flower drop & fruit setting and enhancing fruit yield of king chilli under protected condition in Pasighat climatic condition Correlation studies indicated pod yield per plant was positively and significantly correlated with days to first flowering, followed by days to 50% flowering, days to 1st harvest, no. of pods/plant, plant height, pod weight, pod girth,
					pod length, no. of seeds/pod and reducing sugars. Divergence study revealed that pod yield per plant contributed maximum per cent to the diversity followed by no of seeds per pod, pod length, Vit. A and pod weight.
		Fruit So	cience		
47.	Studies on genetic diversity of citrus in East Siang District of Arunachal Pradesh	Mr. Archan Rabha	Fruit Science	2011	
48.	Effect of Season, Shoot Etiolation and Growth Regulators in Air Layering of Guava (<i>Psidium guajava</i>) cv L-49	Ms. Ponung Taki	Fruit Science	2013	
49.	Effect of Pruning and Spray of urea on growth, flowering and fruiting of Guava (cv. L-49)	Ms. Rebecca Eko	Fruit Science	2013	
50.	Effect of Micronutrient on growth, yield and quality of Banana cv. Grand Naine.	Ms. Lalrinchha ni	Fruit Science	2013	
51.	Forced flowering of pineapple (<i>Ananas comosus</i> cv. Kew) in response to cold stress, ethephon and calcium carbide with or without activated charcoal	Mr. Siyang Borang	Fruit Science	2014	
52.	Effect of growth regulators and time of air layering in litchi (<i>Litchi chinensis</i> Sonn.) cv. Muzaffarpur	Mr. Rishi Longdo	Fruit Science	2015	
53.	Effect of Mulching and Hydrogel on Growth, Yield and Quality of Litchi (<i>Litchi chinensis</i>) cv. Muzaffarpur	Mr. Jaman Rangkham	Fruit Science	2015	

54.	Study on the effect of Stockosorb on the growth and yield of khasi mandarin	Mr. Oder Tabi	Fruit Science	2015	
55.	Selection of superior genotypes of Pummelo (<i>Citrus grandis</i> L.) in East Siang District of Arunachal Pradesh	Mr. Getem Tamut	Fruit Science	2016	
56.	Effect of Different Levels of Nitrogen and Potassium on Growth, Yield and Quality of Litchi (<i>Litchi</i> <i>chinensis</i>) cv. Muzaffarpur	Ms. Lineea Pertin	Fruit Science	2016	
57.	Effect of GA and Pruning on flowering and yield in Assam Lemon under foothills of Arunachal Pradesh.	Mr. Mahesha N	Fruit Science	2016	
58.	Effect of Organic and Inorganic Fertilizers on Growth, Yield and Quality of Papaya (<i>Carica papaya</i> L.) cv. Vinayak	Mr. Shangpong Konyak M	Fruit Science	2017	
59.	Crop Regulation in Guava (<i>Psidium guajava</i> L.) in Foot Hills of Arunachal Pradesh	Mr. Nikja Taha	Fruit Science	2017	
60.	Effect of micronutrients and plant growth regulators on growth, yield and fruit quality of litchi cv. Muzaffarpur under foot hills of Arunachal Pradesh	Mr. Devaraj R	Fruit Science	2017	
61.	Identification and Characterization of superior genotypes of carambola found in Arunachal Pradesh	Ms. Rebika Padun	Fruit Science	2017	
62.	Effect of Plant Growth Regulators, Decapitation and their combination on lateral shoots initiation for vegetative propagation in Papaya (<i>Carica papaya</i>) var. Vinayak.	Ms. Susmita Das	Fruit Science	2018	
63.	Standardization of of Prunng Techique for harvesting of Winter Guava	Ms. Hau Ngaih Lian	Fruit Science	2018	
64.	Studies on Mechanisms of Aluminium Tolerance in Citrus Species	Ms. Longing Basuk Langstieh	Fruit Science	2018	
65.	To Study the effect of PGR on rooting of leaf-bud cuttings in Assam lemon (Citrus limon (L) Burm.).	Mr. Rohullah Amin	Fruit Science	2019	
66.	Effect of Organic Manures on Growth, Yield and Quality of Assam Lemon (Citrus lemon)	Ms. Rosangpui Pachuau	Fruit Science	2019	
67.	Study on Genetic diversity of	Ms. R.	Fruit	2019	<u> </u>

	carambola found in North east India	Lalmuanpu ii	Science		
68.	Effect of planting time, growth regulators and their combination on rooting of hardwood cuttings in grape cv. Bangalore Blue under foothills of Arunachal Pradesh.	Mr. Raju Debbarma	Fruit Science	2020	
69.	Effect of Biofertilizers and plant growth stimulator on seed germination and early development in citrus cv. Rangpur Lime under hydroponic condition	Mr. Nasratullah	Fruit Science	2020	
70.	Effect of plant growth regulators and chemicals on seed germination and seedling growth of rough Lemon	Mr. Sanaullah Arghistani	Fruit Science	2020	
71.	Effect of foliar application of micronutrients on growth, yield and physico-chemical attributes of Aonla cv. NA-7 under the foot hills of Arunachal Pradesh	Mr. M. Daisinlung	Fruit Science	2020	
72.	Morphological and Biochemical characterization of Passion fruit genotypes found in North East Region of India	Mr. Kripa Shankar	Fruit Science	2020	
73.	Influences of Organic and Inorganic Nutrient sources on Growth, Yield, fruit quality and post-harvest life of Lemon cv. Assam Lemon under the foot hills of Arunachal Pradesh	Mr. Songthat William Haokip	Fruit Science	2020	
74.	Effect of PGRs and Micronutrients on Granulation Disorder of Citrus cv. Rangpur Lime.	Ms. Omem Moyong	Fruit Science	2020	
75.	Effect of Different Media and Corm Preparation Methods on Macropropagation of Banana Musa acuminate cv. Grand Naine	Rabson Malemba	Fruit Science	2021	The present studies recommended the use of ½ split corms in Banana <i>Musa acuminate</i> cv. Grand Naine which resulted in the higher number and quality of planting materials and sawdust, sand and cocopeat can be selected in order of priority depending on the availability in a particular area
76.	Effect of NAA and Micronutrients on Flowering, Fruit Setting, Yield and Quality of Litchi (<i>Litchi chinensis Sonn.</i>) cv. Muzaffarpur	Sanabam Indira Devi	Fruit Science	2021	It is concluded from the present studies that application of RDF (1200:500:600 g NPK/plant/year) along with foliar spray of NAA @25 ppm + 0.5% Borax +0.5% Zinc

	can be recommended to the litchi growers under foothills of Arunachal Pradesh to increase the yield and productivity.
77. "Screening of different citrus rootstock species for NPK uptake efficiency and early graftability". Mr. Praveen Gurav Science	It is concluded form the studies that citrus species Karnakhatta, Rangpur lime, Samphola, Volkamariana, Rough lemon and Tasi have the potential as rootstock in North eastern region w.r.t. growth, nutrient uptake and early graft ability.
78. "Influence of Panicle Covering on Fruit, Maturity, Yield, Quality and Storage of Litchi (<i>Litchi chinensis</i> Sonn.) ev Muzaffarpur".	It is recommended from the present studies that covering of litchi panicle after fruit setting with white colour polythene along with recommended package of practices may be adopted by the litchi growers under hot and humid regions of Arunachal Pradesh to obtain the maximum yield and best quality fruits of litchi.
79. "Effect of PSB and VAM with graded levels of Phosphorus on growth, yield and quality of Litchi (Litchi chinensis Sonn.) under foothills of Arunachal Pradesh".	Studies of effect of PSB and VAM with graded levels of phosphorous on growth in litchi revealed that application of 600g P + 100g PSB + 100g VAM improved the growth, yield and quality of litchi as compared to other combinations.
80. "Effect of biofertilizers on growth, quality, yield and shelf life of Guava (<i>Psidium guajava</i> . L) cv. L-49". 81. Effect of planting time, growth Mr. Raju Fruit 2021	Studies conducted on effect of biofertilizers on different parameters of guava concluded that application of RDF+Azotobacter 100 g+ Azosprillum 100g + VAM 100 g proved to be the most effective in improving the growth, quality, yield and shelf life of guava. The results from the present

	regulators and their combination on rooting of hardwood cuttings in grape cv. Bangalore blue under foothills of Arunachal Pradesh.	Debbarma	Science		investigations revealed that the cuttings prepared in the month of March with treatment T3 (IBA 2000 ppm) and T4 (3000 ppm) was found to be best for getting maximum rooting and survival percent in grape cuttings
82.	Studies on influence of growth regulators and chemicals on seed and vegetable propagation of passion fruit	Rinchen Dorjee Bhutia	Fruit Science	2021	The present studies concluded that treatment with GA3 500 ppm improved the vegetative parameters like no. of leaves, height of the seedling and increased the biomass of the plants. However, NAA 200 ppm was best for rooting of cuttings, maximum sprouting percentage and number of roots and leaves.
83.	Morphological and biochemical characterization of passion fruit genotypes found in North East Region of India	Kripa Shankar	Fruit Science	2021	Based on the results obtained from the present investigation, it is concluded that the collected passion fruit genotypes exhibited noticeable variation in the morphological and genetical characteristics which could be utilized for further passion fruit crop improvement works.
84.	Growth, Yield, Fruit Quality and Leaf Nutrient status of Lemon [Citrus limon (L.) Burm.] cv. Assam lemon in response to foliar application of micronutrients.	KH. Anush Sheikh	Fruit Science	2021	The results of the investigations revealed that foliar application of ZnSo4 (0.2%) + FeSO4 (0.2%) + Borax (0.2%) + CusO4 (0.2%) once (two weeks after fruit setting in the month of April) along with the recommended dose of fertilizers (100:100:100 g NPK/plant/year) may be recommended to obtain the maximum yield and best quality fruits of Assam lemon
	Flo	oriculture &			
85.	In vitro Propagation on Dendrobium Orchid var. Earsakul.	Khaling Lalemmoi	Floricultu re & Landscapi ng	2022	In-vitro propagation studies in Dendrobium orchid revealed that 0.5 mg/l KIN+ 7.5 mg/l NAA application was significantly associated with callus induction and formation when explant was placed in 16

MSo	Forestry				hrs normal light. While treatment combination of 2.5 mg/l BAP + 0.5 mg/l NAA was more pertinent for shoot proliferation and 0.5 mg/l BAP + 1 mg/l IBA for root proliferation
86.	Tree Selection, Fruit Characterization and vegetative propagation of Tapil (<i>Phoebe cooperiana</i> U.N. Kanjilal ex. A. Das) in Eastern Himalayas.	Ms. Jasmine Pabin	Tree Improvem ent, Plant Breeding and genetics	2021	The air layering studies in <i>Phoebe cooperiana</i> U.N. Kanjilal ex. A. Das revealed that NAA @ 3000ppm is the best treatment by obtaining highest rooting percentage (74.36%) and number of roots per layer (21.33) and highest
87.	Analysis of variability in morphological and molecular characteristics of <i>Melia dubia</i> Cav. Syn. <i>Melia composite</i> Willd.	Ms. Unshani Daryal	Tree Improvem ent, Plant Breeding & Genetics	2021	survival percentage (54.16). As per outcome of the study, the overall genetic diversity of the studied area for <i>Melia dubia</i> Cav. Syn. <i>Melia composite</i> Willd. was moderate The 5 SSR primers out of 15 SSR had shown <i>Nei's gene diversity</i> (h=0.47), <i>Shannon's Index</i> , (I=0.66) and <i>P_ic</i> value (0.48). These primers varied in detecting the genetic diversity and suggested that genetic composition of the genotypes yet to be affected. In order to avoid inbreeding and alterations of the species, plantations from highly diverse superior seed sources should be raised.
88.	Pre-sowing treatment and seedling performance for nursery production of <i>Morus laevigata</i> Wall. under Eastern Himalayas.	Ms. Seema Chettri	Silvicultu re and Agrofores try	2021	Soaking the extracted seeds of <i>Morus laevigata</i> Wall.in Gibberellic acid solution of 0.1% can be considered as thye most effective seed pretreatment for obtaining maximum germination. Seeds of <i>Morus laevigata</i> Wall.has to be extracted before sowing for obtaining germination. Combination of potting media either with FYM or vermicompost the ratio 1:1 enhances the biomass

					production. Outplanting of the seedling can be suggested after 3-4 months of raising in the potting media.
		Ph.l	D.		
1.	Studies on Morphological and Biochemical Profile of Wild Brinjal (Solanum gilo)	Lalhmingsa nga	Vegetable Science	2018	
2.	Studies on differential response of french bean genotypes against aluminium toxicity in North East region	Athikho Kayia Alice	Vegetable Science	2018	
3.	Evaluation of Different Citrus Genotypes against Aluminum and Manganese Toxicity	Ms. Lakidon Khonglah	Fruit Science	2018	
4.	Studies on Genetic Diversity of Jackfruit (<i>Artocarpus Heterophyllus</i> Lam.) In the North Eastern Region	Mr. Ashok Chhetri	Fruit Science	2018	
5.	Studies on Tolerance Ability of Citrus Species against Salinity and Drought	Ms. Nesara Begane	Fruit Science	2019	
6.	Drought Stress in Strawberry – Studies on Physiological and Biochemical Attributes	Ms. Amrita Thokchom	Fruit Science	2019	
7.	Morphological Studies and Nutritional Profiling of Important Underutilized Fruit Crops of North- East Region	Mr. Thejangulie Angami	Fruit Science	2020	
8.	Effect of plant growth regulators and micro nutrients on fruiting and quality attributes of litchi (<i>Litchi chinensis</i> Sonn).	Oyinti Megu	Fruit Science	2021	It is concluded from the present studies that the foliar application of borax and ZnSO ₄ @ 0.4% proved to significantly resulted in better fruiting, yield and improved the quality of litchi.
9.	Effect of plant growth regulators and micronutrients on seed production of okra (Abelmoschus esculentus L.)Moench.	Vikash Kumar	Vegetable Science	2021	It is inferred from the present studies that plant treatment with P ₄ M ₅ (GA ₃ 100 ppm + Borax 1.0%) is the best for adopting at the field level to reap good economic yield with better quality seed and high net returns in okra.
10.	Screening of Pea (<i>Pisum sativum</i> L.) genotypes and Ameliorative effect of Nutrient and Salicylic Acid against Aluminium Toxicity	Mohd Talha Ansari	Vegetable Science	2021	The outcome of the research revealed that amongst the treatments, the application of 0.5 mM P under aluminium stress appeared as a potential tool in restoring the growth and physiological activities in

					sensitive pea genotype (AP-3) indicating the best ameliorating agent
11.	Studies on morphological and molecular characterization of cherry tomato (<i>Solanum l ycopersicum</i> var. <i>cerasiforme</i>) genotypes.	Naorem Bidyaleima Chanu	Vegetable Science	2022	Findings from the presents investigations concluded that cherry tomato genotypes VRCRT-12 followed by VRCRT-7 and VRCRT-18 have potential economic importance and can be successfully employed for commercial exploitation in crop improvement of cherry tomato
12.	Evaluation of Genetic Diversity of Mandarin (<i>Citrus reticulate</i> Blanco) from different parts of North East India using morphological and SSR markers.	Megha Raghavan	Fruit Science	2022	The results from the present studies concluded that mandarin found in North East India are morphologically diverse but molecular diversity was comparatively less except few genotypes and could be utilized for future crop improvement of mandarin
13.	Characterization and Estimation of Nutritional and Anti-nutritional Components of Underutilized Vegetables of North East India	Md. Ramjan	Vegetable Science	2022	Studies were carried out on 50 different traditional vegetable species of North east India to characterize and estimate nutrient content (nutritional and antinutritional composition) and it revealed that all the fruit vegetables and leafy vegetable species possessed varied nutritional and anti-nutritional components.

COLLEGE OF COMMUNITY SCIENCES, TURA, MEGHALAYA

M.Sc.					
Sl .no.	Theses Title	Name of Student	Major Subject	Year	Outline
			d Science		rition
1.	Nutritional Status and Energy Balance of Tribal Females of Reproductie Age Group of Meghalaya	Elvina Shongsir Mongsang	Food Science and Nutritio n	2018	 Overall prevalence of CED was 24 percent 92% of study subjects were moderately anemic Calcium & iron intake was below recommended dietary allowance
2.	"Development of Value Added Products from Amaranth (Amaranthus L.) Grain"	Ms. Chungkha m Nangthoib i	Food Science and Nutritio n	2021	Standardization of different form (broken, roasted, powdered, whole grains etc.) of Amaranth grain. Formulated and developed - Nutritional, biochemical and sensory evaluation of developed products done. - The developed product such as cake, burfi, coconut ladoo and dosa was evaluated on different parameter.
3.	"Development of Value Added Products from Drumstick (<i>Moringa</i> <i>Oleifera</i>) Leaves"	Ms. Chungkha m Chanu Malemnga nbi	Food Science and Nutritio n	2021	Standardization of dehydration process and powder formulation of drumstick leaves, formulated and developed value added products by using drumstick leaves powder. Nutritional, biochemical and sensory evaluation of developed product done. Chemical analysis for fourteen nutrients was done for all the formulated Moringa supplemented products.
	Home	e Science Ext	tension and	d Comn	nunity Management
4.	Extent of Exposure to Selected Electronic Media by Garo Farm Women in West Garo Hills of Meghalaya				• Radio and television were two important media which was helpful in transmission of information to the people living in various parts of rural areas. It helps people receiving knowledge, ideas and gathers different information through farm and home broadcast by radio and television which helps to develop their living standards. Garo farm women seek information through radio and television and benefitted in their day to day life. It was found out to be an important tool

					responds towards it and found positive results in development of farm women in Garo farm women of West Garo Hills Meghalaya.
5.	Extent of Utilization of Integrated Basin Development and Livelihood Promotion (IBDLP) Programme by Garo Farm Women in Garo Hills of Meghalaya	Mikkimch i G. Momin	Home Science Extensi on and Commu nity Manage ment	2019	 Helps to know the socio economic characteristics; level of awareness and utilization; problem faced by Garo farm women of Meghalaya. Helps to learn about the activities and benefits provided by IBDLP programme. Farm women beneficiaries of selected areas highly utilized only three missions namely Livestock, Horticulture and Forestry & plantation missions. Therefore, other missions should clearly define and intensify the activities among the women beneficiaries so that they can utilize and gain benefits from other missions as well. A study on extent of utilization of IBDLP programme by women beneficiaries can be conducted by taking large sample size and can be done in other parts of Meghalaya as well where IBDLP is operational.
6.	"Roles of Women in Integrated Farming System- A Study in Meghalaya"	Ms. Huidrom Bliss	Extensi on Educati on and Commu nication Manage ment	2021	Study recommends that women play major roles in marketing and harvesting in Fish Farming so they should be trained with marketing strategies and harvesting technologies. In Poultry Farming mostly women are involved in feeding of poultry, hence capacity building programmes may be arranged to make them aware about scientific feeding practices. The major problems faced by the women are lack of awareness about benefits of Integrated Farming system and delay in financial support.

COLLEGE OF AGRICULTURE, IROISEMBA, MANIPUR

		M.Sc.		
Sl. No.	Title of thesis	Name of the Student	Major Subject	Year of completion
		1. AGRO	NOMY	
CAT	EGORY (CROP): RICE			
Cerea	als			
Rice		,		
1.	Studies on Weed Control in the Transplanted Rice and its Economics Implications	L Chaoba Singh	Agronomy (weed management)	1993
2.	Effects of Levels and Method of Application of Nitrogen on the Yield of Transplanted Rice	M Gyanendro Singh	(Agronomy Nutrient management)	1993
3.	A Study on Rice Based Intercropping System Under Upland Rainfed Condition	N Manileima Devi	Agronomy (cropping system)	1995
4.	Effect of Age of Seedling and Spacing on the Yield of Rice (<i>Oryza sativa</i> L.) Variety Norin-18	K Nandini Devi	Agronomy (Agrotechniq ue)	1996
5.	Effect of Levels of Nitrogen on the Growth and Yield of Transplanted Rice	S Jugindro Singh	Agronomy (Nutrient management)	1996
6.	Effect of Seedling Age Cutting Height and Nitrogen Requirement on Economics and Yield of Main-ratoon Rice Sequence	A Sanatombi Devi	Agronomy (Nutrient management)	1998
7.	Study on the Effect of Different Sources of Organic Nitrogen With and Without Inorganic Nitrogenous Fertilizer on the Yield Rice (<i>Oryza</i> sativa L.)	Oinam Bidur Singh	Agronomy (Nutrient management)	1997
8.	Effect of Cyanobacteria and Azolla Biofertilizers in Conjunction with Nitrogenous Fertilizer on the Productivity of Rainfed	M Amutombi Singh	Agronomy (Nutrient management)	1997

	Lowland Rice			
9.	Effect on Spacing and Number of Seedling per Hill on the Yield of Transplanted Rice Under Rainfed Condition	Khumlo Levish Chongloi	Agronomy (Agro- technique)	2001
10	Effect of Different Sources of Phosphorous and Phosphate Solubilizing Bacteria on Yield and Nutrient Uptake to rice (Oryza Sativa L. ev K D 2-6-3)	Sakhen Sorokhaibam	Agronomy (Nutrient management)	2004
11.	Effect of Planting Geometry and Nitrogen on Growth and Yield of Black Aromativ Rice (Chak-hao)	Yamthong Kuki	Agronomy (nutrient management)	2005
12.	Effect of Introducing Arrowhead (Sagitharia sageltiifolia) as an Intercrop of Transplanted Rice (Oryza satva L.)on Productivity and Economics Under Rainfed Condition of Manipur	John Debbarma	Agronomy (cropping system)	2006
13.	Response of Transplanted Rice (<i>Oryza satium</i>) to Zinc and Sulphur with Reference to Growth and Yield	Ranjeeta Khomdram	Agronomy (Nutrient management)	2010
14.	Varietal cum Spatial effect on Yield of Rice (<i>Oryza</i> sativa L.) Under System of Rice Intensification (SRI) Method in Manipur Valley	Pheiroijam Thoithoi Devi	Agronomy (Agro- technique)	2012
15.	Efficacy of some promising Weedicides on Shallow land Transplanted Rice (<i>Oryza sativa</i> L.) Under Rainfed Condition	Punabati Heisnam	Agronomy (weed management)	2012
16.	Influence of Variety and Sowing Date on Growth and Yield of Direct Seeded Puddled Rice (<i>Oryza sativa</i> L.) Under Late Situation	Chumsha Clement Ngoruw	Agronomy (Agro- technique)	2013
17.	Influence of Nitrogen and	Khongbantabam	Agronomy	2015

	Weed Management Practices of Yield of Direct Seeded Puddled Rice (Oryza sativa L.)	Henery Singh	(Nutrient and weed management)	
18.	Studies on the Effect of Age of Seeding and Number of Seedling per Hill on Growth and Yield of Manipur Black Scented Rice <i>Oryza satva</i> L) Cultivar Chakhao Poireiton	Ganesh Narayan Gurjar	Agronomy (Agro- technique)	2016
19.	Effect of Variety and Spacing on the Productivity of Direct Seeded Rice (Oryza satva L.) under Manipur Condition	Ng Monica Devi	Agronomy (Agro- technique)	2017
20.	Studies on the Effect of Sowing Techniques and Seed rate on the Productivity, Economics and Energetic of Direct Seeded Rice (<i>Oryza satva</i> L.) Rainfed Madium land Condition	Nilanjana Halder	Agronomy (Agro- technique)	2017
21.	Influence of Phosphorus and Potassium on Growth and Yield of Black Aromatic Rice (Chak-hao)	Naorem Meena Devi	Agronomy (Nutrient management)	2018
22.	Influence of Different Doses of Pyrazosulfuron- Ethyl and Establishment methods on the Yield of lowland Rice (<i>Oryza sativa</i> L.)	T Malemnganbi	Agronomy (weed management)	2018
23.	Studies on Different Crop Establishment Techniques and Nitrogen Management on Basmati Rice variety (<i>Pusa basmati</i> 1509)	Nurina Shahni	Agronomy (Nutrient management)	2019
24.	Nitrogen Management in Direct Seeded Black Rice (Oryza sativa L.) Under Different Establishment Methods	Kumar Sambhavgiri	Agronomy (Nutrient management)	2019
25.	Effect of chemical priming on drought tolerance and its	Thoudam Anupama Devi	Agronomy (Agrotechniq	2020

	impact on a few varieties of rice under moisture stress condition		ue)	
26.	Systematic Approach on Agronomic Research of SRI system of rice cultivation in Manipur	Nongthombam Anandakumar	Agronomy (Agrotechniq ue)	2018
MAIZ	Z E			
27.	Planting Geometry and Weed Management in Maize (Zea mays L.) and Green Gram (Vigna radiate L.Wilzok) Intercropping System	N Lakshmichand Singh	Agronomy (weed management)	1999
28.	Effect of Weed Management on Growth and Yield of Hybrid Maize (Zea mays L.)	Gaipuichung Kamei	Agronomy (weed management)	2008
29.	Influence of Bio-fertilizer and Nitrogen on Growth and Yield of Hybrid Maize (<i>Zea mays L.</i>)	Zothanmawii	Agronomy (nutrient management)	2013
30.	Effect of Phosphorus and Potash on the Growth and Yield of Hybrid Maize (<i>Zee mays</i> L.)	Rajesh Kumar	Agronomy (nutrient management)	2015
31.	Influence of Integrated Nitrogen Management Practices on Growth and Yield of Hybrid Maize(Zea mays L)	Y Sanatombi Devi	Agronomy (nutrient management)	2016
32.	Influence of Sowing Time and Integrated Nitrogen Management on Growth and Yield of local Glutinous Maize (<i>Zea mays</i> L)	Tabuiliu Abonmai	Agronomy (nutrient management)	2019
WHE	EAT			
33.	Studies on Wheat Based Intercropping Systems Under Upland Rainfed Conditions	K Pradipkumar Singh	Agronomy (cropping system)	1994
34.	Effect of Different Doses of Vermicompost on Growth	Ajit Kripal Sahu	Agronomy (nutrient	2006

and Yield of Wheat [Triticum aestivum L. c.v. H W 2004 (Amar)] 35. Effect of different Concentrations of Potassium nitrate (KNO ₂) as Foliar Spray on Growth and Yield of Wheat (Triticum aestivum L.) TUBER CROP POTATO 36. Study on the Effect on Seed size and Spacing on the Growth, Development and Yield of Potato (Solanum tuberosum L.) Var. Kufri Jyoti Grown Under Clay Soil of Manipur 37. Study on Effect of Different Methods of Planting and Placement of Seed on the Growth, Development and Yield of Potato (Solanum tuberosum L.) Var. Kufri Jyoti Grown Under Clay Soil of Manipur 38. Effect of Different Levels and Mode of Application of Potassium on Growth and Yield of Potato (Solanum tuberosum L.) Var. kufri Jyoti 39. Effect of Varying Levels of Nitrogen with and without Azolobactor on Growth and Yield of Potato (Solanum tuberosum L.) Var. "Kufri Jyoti 40. Effect of nitrogen in Integrated with Different Organic Sources on Growth and Yield of Potato (Solanum tuberosum L.) var. "Kufri Jyoti" 41. Effect of Mulching on the Kimneihoi Agronomy 41. Effect of Mulching on the Kimneihoi Agronomy 42. Effect of Mulching on the Kimneihoi Agronomy 43. Effect of Mulching on the Kimneihoi Agronomy 44. Effect of Mulching on the Kimneihoi Agronomy 45. Effect of Mulching on the Kimneihoi Agronomy 46. Effect of Mulching on the Kimneihoi		and Yield of Wheat		managamant)	
35. Effect of different Concentrations of Potassium nitrate (KNO ₃) as Foliar Spray on Growth and Yield of Wheat (Triticum aestivum L.) TUBER CROP POTATO 36. Study on the Effect on Seed size and Spacing on the Growth, Development and Yield of Potato (Solanum tuberosum L.) Var. Kufri Jyoti Grown Under Clay Soil of Manipur 37. Study on Effect of Different Methods of Planting and Placement of Seed on the Growth, Development and Yield of Potato (Solanum tuberosum L.) Var Kufri Jyoti Grown Under Clay Soil of Manipur 38. Effect of Different Levels and Mode of Application of Potassium on Growth and Yield of Potato (Solanum tuberosum L.) Var kufri Jyoti Grown Under Clay Soil of Manipur 38. Effect of Different Levels and Mode of Application of Potassium on Growth and Yield of Potato (Solanum tuberosum L.) Var. kufri Jyoti 39. Effect of Varying Levels of Nitrogen with and without Azolobactor on Growth and Yield of Potato (Solanum tuberosum L.) var. "Kufri Jyoti" 40. Effect of intogen in Integrated with Different Organic Sources on Growth and Yield of Potato (Solanum tuberosum L.) var. "Kufri Jyoti" 40. Effect of introgen in Integrated with Different Organic Sources on Growth and Yield of Potato (Solanum tuberosum L., var Kufri Jyoti" 40. Effect of introgen in Integrated with Different Organic Sources on Growth and Yield of Potato (Solanum tuberosum L., var Kufri Jyoti")				management)	
Size		<u>L</u>			
Concentrations of Potassium intrate (KNO ₃) as Foliar Spray on Growth and Yield of Wheat (Triticum aestivum L.) TUBER CROP POTATO 36. Study on the Effect on Seed size and Spacing on the Growth, Development and Yield of Potato (Solanum tuberosum L.) Var. Kufri Jyori Grown Under Clay Soil of Manipur 37. Study on Effect of Different Methods of Planting and Placement of Seed on the Growth, Development and Yield of Potato (Solanum tuberosum L.) Var. Kufri Jyori Grown Under Clay Soil of Manipur 38. Effect of Different Levels and Mode of Application of Potassium on Growth and Yield of Potato (Solanum tuberosum L.) Var. Kufri Jyori 39. Effect of Varying Levels of Nirogen with and without Azolobactor on Growth and Yield of Potato (Solanum tuberosum L.) Var. Kufri Jyoti 40. Effect of Intogen in Integrated with Different Organic Sources on Growth and Yield of Potato (Solanum tuberosum L.) var. "Kufri Jyoti" Anju Keisham Agronomy (nutrient management) Anju Keisham Agronomy (nutrient management) Apronomy (nutrient management) 2002 Control Title Manishwari Devi (nutrient management) Anju Keisham Agronomy (nutrient management) Anju Keisham Agronomy (nutrient management) Anju Keisham Agronomy (nutrient management)	25		Valentuine avyy	A ~~~~~	2014
Potassium nitrate (KNO ₃) as Foliar Spray on Growth and Yield of Wheat (Triticum aestivum L.) TUBER CROP POTATO 36. Study on the Effect on Seed size and Spacing on the Growth, Development and Yield of Potato (Solanum tuberosum L.) Var. Kufri Jyoti Grown Under Clay Soil of Manipur 37. Study on Effect of Different Growth, Development and Yield of Potato (Solanum tuberosum L.) Var Kufri Jyoti Grown Under Clay Soil of Manipur 38. Effect of Different Levels and Mode of Application of Potassium on Growth and Yield of Potato (Solanum tuberosum L.) Var. Kufri Jyoti 39. Effect of Varying Levels of Nitrogen with and without Azolobactor on Growth and Yield of Potato (Solanum tuberosum L.) Var. Kufri Jyoti 40. Effect of nitrogen in Integrated with Different Organic Sources on Growth and Yield of Potato (Solanum tuberosum L.) var. "Kufri Jyoti" Anju Keisham Agronomy 2002 Apronomy (nutrient management) Agronomy 2002 Effect of Varying Levels of Nitrogen with and without Azolobactor on Growth and Yield of Potato (Solanum tuberosum L.) var. "Kufri Jyoti" 40. Effect of nitrogen in Integrated with Different Organic Sources on Growth and Yield of Potato (Solanum tuberosum L., var Kufri Jyoti) Anju Keisham Agronomy 2013 Anju Keisham Agronomy (nutrient management)	33.			_	2014
as Foliar Spray on Growth and Yield of Wheat (Triticum aestivum L.) TUBER CROP POTATO 36. Study on the Effect on Seed size and Spacing on the Growth, Development and Yield of Potato (Solanum tuberosum L.) Var. Kufri Jyoti Grown Under Clay Soil of Manipur 37. Study on Effect of Different Methods of Planting and Placement of Seed on the Growth, Development and Yield of Potato (Solanum tuberosum L.) Var. Kufri Jyoti Grown Under Clay Soil of Manipur 38. Effect of Different Levels and Mode of Application of Potassium on Growth and Yield of Potato (Solanum tuberosum L.) Var. Kufri Jyoti 39. Effect of Varying Levels of Nitrogen with and without Azolobactor on Growth and Yield of Potato (Solanum tuberosum L.) Var. Kufri Jyoti 40. Effect of nitrogen in Integrated with Different Organic Sources on Growth and Vield of Potato (Solanum tuberosum L.) var. Kufri Jyoti 40. Effect of nitrogen in Integrated with Different Organic Sources on Growth and Vield of Potato (Solanum tuberosum L.) var. Kufri Jyoti 40. Effect of nitrogen in Integrated with Different Organic Sources on Growth and Vield of Potato (Solanum tuberosum L.) var. Kufri Jyoti 40. Effect of nitrogen in Integrated with Different Organic Sources on Growth and Vield of Potato (Solanum tuberosum L., var Kufri Jyoti)			Manishwari Devi	`	
and Yield of Wheat (Triticum aestivum L.) TUBER CROP POTATO 36. Study on the Effect on Seed size and Spacing on the Growth, Development and Yield of Potato (Solanum tuberosum L.) Var. Kufri Jyoti Grown Under Clay Soil of Manipur 37. Study on Effect of Different Methods of Planting and Placement of Seed on the Growth, Development and Yield of Potato (Solanum tuberosum L.) Var. Kufri Jyoti Grown Under Clay Soil of Manipur 38. Effect of Different Levels and Mode of Application of Potassium on Growth and Yield of Potato (Solanum tuberosum L.) Var. kufri Jyoti 39. Effect of Varying Levels of Nitrogen with and without Azolobactor on Growth and Yield of Potato (Solanum tuberosum L.) Var. "Kufri Jyoti" 40. Effect of introgen in Integrated with Different Organic Sources on Growth and Yield of Potato (Solanum tuberosum L.) var. "Kufri Jyoti" Anju Keisham Agronomy (nutrient management) Anju Keisham Agronomy (nutrient management) Anju Keisham Agronomy (nutrient management)				management)	
TUBER CROP POTATO 36. Study on the Effect on Seed size and Spacing on the Growth, Development and Yield of Potato (Solanum tuberosum L.) Var. Kufri Jyoti Grown Under Clay Soil of Manipur 37. Study on Effect of Different Methods of Planting and Placement of Seed on the Growth, Development and Yield of Potato (Solanum tuberosum L.) Var Kufri Jyoti Grown Under Clay Soil of Manipur 38. Effect of Different Levels and Mode of Application of Potassium on Growth and Yield of Potato (Solanum tuberosum L.) Var. Kufri Jyoti 39. Effect of Varying Levels of Nitrogen with and without Azolobactor on Growth and Yield of Potato (Solanum tuberosum L.) Var. 'Kufri Jyoti 40. Effect of introgen in Integrated with Different Organic Sources on Growth and Yield of Potato (Solanum tuberosum L, var Kuffri Jyoti) 40. Effect of introgen in Integrated with Different Organic Sources on Growth and Yield of Potato (Solanum tuberosum L, var Kuffri Jyoti) 40. Effect of introgen in Integrated with Different Organic Sources on Growth and Yield of Potato (Solanum tuberosum L, var Kuffri Jyoti)					
TUBER CROP POTATO 36. Study on the Effect on Seed size and Spacing on the Growth, Development and Yield of Potato (Solamum tuberosum L.) Var. Kufri Jyoti Grown Under Clay Soil of Manipur 37. Study on Effect of Different Methods of Planting and Placement of Seed on the Growth, Development and Yield of Potato (Solamum tuberosum L.) Var Kufri Jyoti Grown Under Clay Soil of Manipur 38. Effect of Different Levels and Mode of Application of Potassium on Growth and Yield of Potato (Solamum tuberosum L.) Var. kufri Jyoti 39. Effect of Varying Levels of Nitrogen with and without Azolobactor on Growth and Yield of Potato (Solamum tuberosum L.) var. "Kufri Jyoti" 40. Effect of introgen in Integrated with Different Organic Sources on Growth and Yield of Potato (Solamum tuberosum L, var. "Kufri Jyoti" Agronomy (nutrient management) Agronomy (nutrient management) 40. Effect of introgen in Integrated with Different Organic Sources on Growth and Yield of Potato (Solamum tuberosum L, var. "Kufri Jyoti" Apronomy (nutrient management) Apronomy (nutrient management)					
Study on the Effect on Seed size and Spacing on the Growth, Development and Yield of Potato (Solanum tuberosum L.) Var. Kufri Jyoti Grown Under Clay Soil of Manipur 37. Study on Effect of Different Methods of Planting and Placement of Seed on the Growth, Development and Yield of Potato (Solanum tuberosum L.) Var Kufri Jyoti Grown Under Clay Soil of Manipur 38. Effect of Different Levels and Mode of Application of Potassium on Growth and Yield of Potato (Solanum tuberosum L.) Var. Kufri Jyoti 39. Effect of Varying Levels of Nitrogen with and without Azolobactor on Growth and Yield of Potato (Solanum tuberosum L.) var. "Kufri Jyoti" Ps Esther Anal Nitrogen with and without Azolobactor on Growth and Yield of Potato (Solanum tuberosum L.) var. "Kufri Jyoti" Agronomy (nutrient management)		(Triticum aestivum L.)			
Study on the Effect on Seed size and Spacing on the Growth, Development and Yield of Potato (Solanum tuberosum L.) Var. Kufri Jyoti Grown Under Clay Soil of Manipur Singh Agronomy (Agrotechniq ue)	TUBE	ER CROP			
Study on the Effect on Seed size and Spacing on the Growth, Development and Yield of Potato (Solanum tuberosum L.) Var. Kufri Jyoti Grown Under Clay Soil of Manipur Singh Agronomy (Agrotechniq ue)					
size and Spacing on the Growth, Development and Yield of Potato (Solanum tuberosum L.) Var. Kufri Jyoti Grown Under Clay Soil of Manipur 37. Study on Effect of Different Methods of Planting and Placement of Seed on the Growth, Development and Yield of Potato (Solanum tuberosum L.) Var Kufri Jyoti Grown Under Clay Soil of Manipur 38. Effect of Different Levels and Mode of Application of Potassium on Growth and Yield of Potato (Solanum tuberosum L.) Var. kufri Jyoti 39. Effect of Varying Levels of Nitrogen with and without Azolobactor on Growth and Yield of Potato (Solanum tuberosum L.) Var. "Kufri Jyoti" 40. Effect of introgen in Integrated with Different Organic Sources on Growth and Yield of Potato (Solanum tuberosum L.) var. "Kufri Jyoti" 40. Effect of introgen in Integrated with Different Organic Sources on Growth and Yield of Potato (Solanum tuberosum L.) var. "Kufri Jyoti" 40. Effect of introgen in Integrated with Different Organic Sources on Growth and Yield of Potato (Solanum tuberosum L.) var. "Kufri Jyoti" 40. Effect of introgen in Integrated with Different Organic Sources on Growth and Yield of Potato (Solanum tuberosum L.) var. "Kufri Jyoti" 40. Effect of nitrogen in Integrated with Different Organic Sources on Growth and Yield of Potato (Solanum tuberosum L.) var. "Kufri Jyoti" 41. Effect of nitrogen in Integrated with Different Organic Sources on Growth and Yield of Potato (Solanum tuberosum L.) var. "Kufri Jyoti"			Kh Nandijei	Agronomy	1994
Growth, Development and Yield of Potato (Solanum tuberosum L.) Var. Kufri Jyoti Grown Under Clay Soil of Manipur 37. Study on Effect of Different Methods of Planting and Placement of Seed on the Growth, Development and Yield of Potato (Solanum tuberosum L.) Var Kufri Jyoti Grown Under Clay Soil of Manipur 38. Effect of Different Levels and Mode of Application of Potassium on Growth and Yield of Potato (Solanum tuberosum L.) Var. Kufri Jyoti 39. Effect of Varying Levels of Nitrogen with and without Azolobactor on Growth and Yield of Potato (Solanum tuberosum L.) var. "Kufri Jyoti" 40. Effect of introgen in Integrated with Different Organic Sources on Growth and Yield of Potato (Solanum tuberosum L.) var. "Kufri Jyoti" 40. Effect of introgen in Integrated with Different Organic Sources on Growth and Yield of Potato (Solanum tuberosum L.) var. "Kufri Jyoti" 40. Effect of introgen in Integrated with Different Organic Sources on Growth and Yield of Potato (Solanum tuberosum L.) var. "Kufri Jyoti" 40. Effect of introgen in Integrated with Different Organic Sources on Growth and Yield of Potato (Solanum tuberosum L.) var. "Kufri Jyoti" 40. Effect of introgen in Integrated with Different Organic Sources on Growth and Yield of Potato (Solanum tuberosum L.) var. "Kufri Jyoti"			-		
Yield of Potato (Solanum tuberosum L.) Var. Kufri Jyoti Grown Under Clay Soil of Manipur 37. Study on Effect of Different Methods of Planting and Placement of Seed on the Growth, Development and Yield of Potato (Solanum tuberosum L.) Var Kufri Jyoti Grown Under Clay Soil of Manipur 38. Effect of Different Levels and Mode of Application of Potassium on Growth and Yield of Potato (Solanum tuberosum L.) Var. Kufri Jyoti 39. Effect of Varying Levels of Nitrogen with and without Azolobactor on Growth and Yield of Potato (Solanum tuberrosum L.) var. "Kufri Jyoti" 40. Effect of introgen in Integrated with Different Organic Sources on Growth and Yield of Potato (Solanum tuberosum L, var Kufri Jyoti) Anju Keisham Agronomy (nutrient management) Agronomy (nutrient management) Agronomy (nutrient management) 2002 Agronomy (nutrient management) Agronomy (nutrient management)				` •	
tuberosum L.) Var. Kufri Jyoti Grown Under Clay Soil of Manipur 37. Study on Effect of Different Methods of Planting and Placement of Seed on the Growth, Development and Yield of Potato (Solanum tuberosum L.) Var Kufri Jyoti Grown Under Clay Soil of Manipur 38. Effect of Different Levels and Mode of Application of Potassium on Growth and Yield of Potato (Solanum tuberosum L.) Var. kufri Jyoti 39. Effect of Varying Levels of Nitrogen with and without Azolobactor on Growth and Yield of Potato (Solanum tuberrosum L.) var. "Kufri Jyoti" 40. Effect of nitrogen in Integrated with Different Organic Sources on Growth and Yield of Potato (Solanum tuberosum L, var Kurffri jyoti) Agronomy (nutrient management) 4202 Agronomy (nutrient management) 437 Agronomy (nutrient management) 448 Agronomy (nutrient management) 458 Agronomy (nutrient management) 469 Agronomy (nutrient management)					
37. Study on Effect of Different Methods of Planting and Placement of Seed on the Growth, Development and Yield of Potato (Solanum tuberosum L.) Var Kufri Jyoti 38. Effect of Different Levels and Mode of Application of Potassium on Growth and Yield of Potato (Solanum tuberosum L.) Var kufri Jyoti 39. Effect of Varying Levels of Nitrogen with and without Azolobactor on Growth and Yield of Potato (Solanum tuberrosum L.) var. "Kufri Jyoti" 40. Effect of nitrogen in Integrated with Different Organic Sources on Growth and Yield of Potato (Solanum tuberosum L, var Kuffri jyoti) Agronomy (nutrient management) W Vijayalakshmi Devi W Vijayalakshmi Devi W Vijayalakshmi Devi Agronomy (nutrient management) Yes Esther Anal Agronomy (nutrient management) Agronomy (nutrient management) 2002 Anju Keisham Agronomy (nutrient management) Agronomy (nutrient management)		`			
Soil of Manipur Study on Effect of Different Methods of Planting and Placement of Seed on the Growth, Development and Yield of Potato (Solanum tuberosum L.) Var Kufri Jyoti Grown Under Clay Soil of Manipur 38. Effect of Different Levels and Mode of Application of Potassium on Growth and Yield of Potato (Solanum tuberosum L.) Var. kufri Jyoti 39. Effect of Varying Levels of Nitrogen with and Yield of Potato (Solanum tuberrosum L.) var. "Kufri Jyoti" 40. Effect of nitrogen in Integrated with Different Organic Sources on Growth and Yield of Potato (Solanum tuberosum L, var Kufri Jyoti" Anju Keisham Agronomy (nutrient management) Anju Keisham Agronomy (nutrient management) Anju Keisham Agronomy (nutrient management) Agronomy (nutrient management) 2002					
37. Study on Effect of Different Methods of Planting and Placement of Seed on the Growth, Development and Yield of Potato (Solanum tuberosum L.) Var Kufri Jyoti Grown Under Clay Soil of Manipur 38. Effect of Different Levels and Mode of Application of Potassium on Growth and Yield of Potato (Solanum tuberosum L.) Var. kufri Jyoti 39. Effect of Varying Levels of Nitrogen with and without Azolobactor on Growth and Yield of Potato (Solanum tuberrosum L.) var. "Kufri Jyoti" 40. Effect of nitrogen in Integrated with Different Organic Sources on Growth and Yield of Potato (Solanum tuberosum L, var Kufri Jyoti) Anju Keisham Agronomy (nutrient management) Anju Keisham Agronomy (nutrient management) Agronomy (nutrient management) 2013 Anju Keisham Agronomy (nutrient management)					
Methods of Planting and Placement of Seed on the Growth, Development and Yield of Potato (Solanum tuberosum L.) Var Kufri Jyoti Grown Under Clay Soil of Manipur 38. Effect of Different Levels and Mode of Application of Potassium on Growth and Yield of Potato (Solanum tuberosum L.) Var. kufri Jyoti 39. Effect of Varying Levels of Nitrogen with and without Azolobactor on Growth and Yield of Potato (Solanum tuberrosum L.) var. "Kufri Jyoti" 40. Effect of nitrogen in Integrated with Different Organic Sources on Growth and Yield of Potato (Solanum tuberosum L, var Kuffi jyoti) Anju Keisham Agronomy (nutrient management) Agronomy (nutrient management) Agronomy (nutrient management) 2002 Anju Keisham Agronomy (nutrient management) Agronomy (nutrient management)	37.	±	Soram Nilla	Agronomy	1998
Placement of Seed on the Growth, Development and Yield of Potato (Solanum tuberosum L.) Var Kufri Jyoti Grown Under Clay Soil of Manipur 38. Effect of Different Levels and Mode of Application of Potassium on Growth and Yield of Potato (Solanum tuberosum L.) Var. kufri Jyoti 39. Effect of Varying Levels of Nitrogen with and without Azolobactor on Growth and Yield of Potato (Solanum tuberrosum L.) var. "Kufri Jyoti" 40. Effect of nitrogen in Integrated with Different Organic Sources on Growth and Yield of Potato (Solanum tuberosum L, var Kuffi jyoti) Anju Keisham Agronomy (nutrient management) Agronomy (nutrient management) 2013 Anju Keisham Agronomy (nutrient management)			Singh		
Growth, Development and Yield of Potato (Solanum tuberosum L.) Var Kufri Jyoti Grown Under Clay Soil of Manipur 38. Effect of Different Levels and Mode of Application of Potassium on Growth and Yield of Potato (Solanum tuberosum L.) Var. kufri Jyoti 39. Effect of Varying Levels of Nitrogen with and without Azolobactor on Growth and Yield of Potato (Solanum tuberrosum L.) var. "Kufri Jyoti" 40. Effect of nitrogen in Integrated with Different Organic Sources on Growth and Yield of Potato (Solanum tuberosum L, var Kurffri jyoti) Anju Keisham Agronomy (nutrient management) Anju Keisham Agronomy (nutrient management) Anju Keisham Agronomy (nutrient management)			2		
Yield of Potato (Solanum tuberosum L.) Var Kufri Jyoti Grown Under Clay Soil of Manipur 38. Effect of Different Levels and Mode of Application of Potassium on Growth and Yield of Potato (Solanum tuberosum L.) Var. kufri Jyoti 39. Effect of Varying Levels of Nitrogen with and without Azolobactor on Growth and Yield of Potato (Solanum tuberosum L.) var. "Kufri Jyoti" 40. Effect of nitrogen in Integrated with Different Organic Sources on Growth and Yield of Potato (Solanum tuberosum L, var Kuffri jyoti) Anju Keisham Agronomy (nutrient management) Anju Keisham Agronomy (nutrient management)					
tuberosum L.) Var Kufri Jyoti Grown Under Clay Soil of Manipur 38. Effect of Different Levels and Mode of Application of Potassium on Growth and Yield of Potato (Solanum tuberosum L.) Var. kufri Jyoti 39. Effect of Varying Levels of Nitrogen with and without Azolobactor on Growth and Yield of Potato (Solanum tuberosum L.) var. "Kufri Jyoti" 40. Effect of nitrogen in Integrated with Different Organic Sources on Growth and Yield of Potato (Solanum tuberosum L, var Kurffri jyoti) 41. Agronomy (nutrient management) Agronomy (nutrient management) 2002 Agronomy (nutrient management)					
Jyoti Grown Under Clay Soil of Manipur		· ·			
Soil of Manipur 38. Effect of Different Levels and Mode of Application of Potassium on Growth and Yield of Potato (Solanum tuberosum L.) Var. kufri Jyoti 39. Effect of Varying Levels of Nitrogen with and Yield of Potato (Solanum tuberrosum L.) var. "Kufri Jyoti" 40. Effect of nitrogen in Integrated with Different Organic Sources on Growth and Yield of Potato (Solanum tuberosum L, var Kurffri jyoti) Agronomy (nutrient management) Anju Keisham Agronomy (nutrient management) Agronomy (nutrient management) Agronomy (nutrient management)					
38. Effect of Different Levels and Mode of Application of Potassium on Growth and Yield of Potato (Solanum tuberosum L.) Var. kufri 39. Effect of Varying Levels of Nitrogen with and Yield of Potato (Solanum tuberrosum L.) var. "Kufri Jyoti" 40. Effect of nitrogen in Integrated with Different Organic Sources on Growth and Yield of Potato (Solanum tuberosum L, var Kurffri jyoti) Anju Keisham Agronomy (nutrient management) Agronomy (nutrient management) Agronomy (nutrient management) 2002 Anju Keisham Agronomy (nutrient management) 2013					
and Mode of Application of Potassium on Growth and Yield of Potato (Solanum tuberosum L.) Var. kufri Jyoti 39. Effect of Varying Levels of Nitrogen with and without Azolobactor on Growth and Yield of Potato (Solanum tuberrosum L.) var. "Kufri Jyoti" 40. Effect of nitrogen in Integrated with Different Organic Sources on Growth and Yield of Potato (Solanum tuberosum L, var Kurffri jyoti) Anju Keisham Agronomy (nutrient management) Anju Keisham Agronomy (nutrient management)	38.		W Vijavalakshmi	Agronomy	1999
Potassium on Growth and Yield of Potato (Solanum tuberosum L.) Var. kufri Jyoti 39. Effect of Varying Levels of Nitrogen with and without Azolobactor on Growth and Yield of Potato (Solanum tuberrosum L.) var. "Kufri Jyoti" 40. Effect of nitrogen in Integrated with Different Organic Sources on Growth and Yield of Potato (Solanum tuberosum L, var Kuffri jyoti) Anju Keisham Agronomy (nutrient management) Anju Keisham Integrated with Different (nutrient management)					2000
Yield of Potato (Solanum tuberosum L.) Var. kufri Jyoti 39. Effect of Varying Levels of Nitrogen with and without Azolobactor on Growth and Yield of Potato (Solanum tuberrosum L.) var. "Kufri Jyoti" 40. Effect of nitrogen in Integrated with Different Organic Sources on Growth and Yield of Potato (Solanum tuberosum L, var Kuffri jyoti) Anju Keisham Agronomy (nutrient management) (nutrient management)				`	
tuberosum L.) Var. kufri Jyoti 39. Effect of Varying Levels of Nitrogen with and without Azolobactor on Growth and Yield of Potato (Solanum tuberrosum L.) var. "Kufri Jyoti" 40. Effect of nitrogen in Integrated with Different Organic Sources on Growth and Yield of Potato (Solanum tuberosum L, var Kuffri jyoti) Anju Keisham Agronomy (nutrient management)					
39. Effect of Varying Levels of Nitrogen with and without Azolobactor on Growth and Yield of Potato (Solanum tuberrosum L.) var. "Kufri Jyoti" 40. Effect of nitrogen in Integrated with Different Organic Sources on Growth and Yield of Potato (Solanum tuberosum L, var Kurffri jyoti) Apronomy (nutrient management) Apronomy (nutrient management)		,			
39. Effect of Varying Levels of Nitrogen with and without Azolobactor on Growth and Yield of Potato (Solanum tuberrosum L.) var. "Kufri Jyoti" 40. Effect of nitrogen in Integrated with Different Organic Sources on Growth and Yield of Potato (Solanum tuberosum L, var Kurffri jyoti) Agronomy (nutrient management) Agronomy 2013 Agronomy (nutrient management)					
Nitrogen with and without Azolobactor on Growth and Yield of Potato (Solanum tuberrosum L.) var. "Kufri Jyoti" 40. Effect of nitrogen in Integrated with Different Organic Sources on Growth and Yield of Potato (Solanum tuberosum L, var Kurffri jyoti) (nutrient management) Apronomy (nutrient management)	39.		Ps Esther Anal	Agronomy	2002
Azolobactor on Growth and Yield of Potato (Solanum tuberrosum L.) var. "Kufri Jyoti" 40. Effect of nitrogen in Integrated with Different Organic Sources on Growth and Yield of Potato (Solanum tuberosum L, var Kurffri jyoti) Anju Keisham Agronomy (nutrient management)				_	-
Yield of Potato (Solanum tuberrosum L.) var. "Kufri Jyoti" 40. Effect of nitrogen in Integrated with Different Organic Sources on Growth and Yield of Potato (Solanum tuberosum L, var Kurffri jyoti) Anju Keisham Agronomy (nutrient management)				`	
tuberrosum L.) var. "Kufri Jyoti" 40. Effect of nitrogen in Integrated with Different Organic Sources on Growth and Yield of Potato (Solanum tuberosum L, var Kurffri jyoti) Anju Keisham Agronomy (nutrient management)					
Jyoti" 40. Effect of nitrogen in Integrated with Different Organic Sources on Growth and Yield of Potato (Solanum tuberosum L, var Kurffri jyoti) Anju Keisham Agronomy (nutrient management) (nutrient management)					
40. Effect of nitrogen in Integrated with Different Organic Sources on Growth and Yield of Potato (Solanum tuberosum L, var Kurffri jyoti) Anju Keisham Agronomy (nutrient management) Anju Keisham Agronomy (nutrient management)					
Integrated with Different Organic Sources on Growth and Yield of Potato (Solanum tuberosum L, var Kurffri jyoti) (nutrient management)	40.		Anju Keisham	Agronomy	2013
Organic Sources on Growth and Yield of Potato (Solanum tuberosum L, var Kurffri jyoti) management)		<u> </u>			
and Yield of Potato (Solanum tuberosum L, var Kurffri jyoti)		<u> </u>		`	
(Solanum tuberosum L, var Kurffri jyoti)					
Kurffri jyoti)					
	41.		Kimneihoi	Agronomy	2014

	Yield of Potato (<i>Solanum</i> tuberosumL.) local Cultivar Thangal Allu	Duhlian	(agrotechniqu e)	
42.	Effect of Seed Size and spacing on Yield and Economic of Potato (Solanum tuberosum L.) var. Kufri Jyoti	Yengkhom Telneikhomba	Agronomy (agrotechniqu e	2014
43.	Comparative Study in Growth and Yield of Different Varieties of Potato (<i>Solanum tuberosum</i> L) in Manipur Condition	Dibyendu Debbarma	Agronomy (agrotechniqu e	2016
44.	Effect of Integrated Nitrogen Management on Yield of Potato (Solanum tuberosum L.) local Cultivar Alu Amubi	Kamwenes Kazamba	Agronomy (Nutrient management)	2019
OILS	EED CROP			
45.	Effect of Nitrogen Application on the Seed Yield of Sunflower (Helianthus annuus L.)	M Shanti Devi	Agronomy (Nutrient management)	1994
46.	Effect of Nitrogen, Phosphorus and Potassium on Growth and Yield of Broad Leaf Mustard (Brassica Juncea Var. rugosa. Roxb tsen and Lee)	Lydia Zimik	Agronomy (Nutrient management)	1999
47.	Effect of Different Levels of Nitrogen and Sulphur on Seed Yield and Oil Content of Rapeseed (<i>Brassica</i> campestris var. Toria)	Nongmaithem Jyotisana	Agronomy (Nutrient management)	2000
48.	Effect of Spacing on Different Plant Types of Groundnut (<i>Araches</i> hypogaea L) Under the Foot Hills Conditions of Manipur	N Arunkumar Singh	Agronomy	2001
49.	Effect of Azotobacter on Yield and Oil Content of a few Varieties of Rapseed and Mustard Under Manipur Condition	Sucharita Dutta	Agronomy (Nutrient management)	2001

50.	Studies on the Effect of Rhizobium on the Growth and Yield of Different Varieities of Soyabean (Glycine max L. Messit)	Sukanya Pandey	Agronomy (Nutrient management)	2001
51.	Study on Yield Performance of a few Varieties of Rapeseed and Mustard Under Manipur Condition	I Rajendro Singh	Agronomy (Agro- technique)	2003
52.	Effect of Phosphorus and Organic Manure on Growth and Yield of Rapeseed (Brassica campestris var. toria) Under Late-Sown Condition	N Anando Singh	Agronomy (Nutrient management)	2004
53.	Effects of Phosphorus on Plant Growth and Yield of Promising Varieties of Soybean (<i>Glycine max L.</i> Merril) Under Rainfed Condition of Manipur	Kamalesh Kumar	Agronomy (Nutrient management)	2011
54	Impact of Hydrogen and Thiourea on Field and Quality of Indian Mustard(<i>Brassiea juncea</i> L.) Under Moisture Stress Condition	Abhinanda Singh	Agronomy (Water management)	2015
55.	Effect of Herbicides on Growth, Yield and Weed Dynamics of Soybean (<i>Gtycine max.</i> L. Merrill) under Rainfed Condition of Manipur	Ng Bishal Singh	Agronomy (Weed management)	2016
56.	Agronomic Manipuration of Indain Mustard (<i>Brassica junces L.</i>) for Yield Optimization under Protected Irrigation of late Sown Condition	Aswin C	Agronomy (Agro - technique)	2017
57.	Effect of mulching on performance of soyabean	Deva Daniel Anand	Agronomy (Agro - technique)	2020
PULS	SE CROP		,	

58.	Studies on Effect of Cobalt and Molybdenum on Yield of Broad Bean	Y Kunjo Singh	Agronomy (Nutrient management)	1995
		NI CI		1006
59.	Effect of Nitrogen,	N Shantikiran	Agronomy	1996
	phosphorus and Potassium	Devi	(nutrient	
	on Yield of Black gram		management)	
	(Vignna L.)			
60.	Effect of Lime and	A Kirankumar	Agronomy	1998
	Molybdenum on the Yield	Singh	(Nutrient	
	of Field Pea (Psum sativum		management)	
	L. Sensu lato)			
61.	Effect of Sources and	Lhungdim	Agronomy	1997
	Levels of Phosphorus on	Jamkhogin	(Nutrient	
	the Yield of Green gram		management)	
	(Vigna radiate L Wilezek)			
62.	Effect of Different Levels	Y Mrinalini Devi	Agronomy	2000
	of Nitrogen in Association		(Nutrient	
	with "Rhizobium" on the		management)	
	Growth and Yield of Broad			
	Bean (Vicia faba L.)			
63.	Effect of Nitrogen in	Nandini	Agronomy	2000
00.	Conjunction with	Chongtham	(nutrient	2000
	Rhizobium inoculation on	Chongman	management)	
	Growth, Modulation and		management)	
	Yield of Gram (Cicer			
	arietinum, L.)			
64.	Productivity of Pea (<i>Pesum</i>	Rajendra Kumar	Agronomy	2002
01.	sativum L.) as Influenced	Bhattarai	(Nutrient	2002
	by Integration of Different	Dilattarar	management)	
	Nutrient Sources		management)	
65.	Response of Broad Bean	Judy Khianngte	Agronomy	2003
05.	(Vicia faba L.) To Different	Lalrimsangi	(Nutrient	2003
	Strains of Rhizobium in	Lammsangi	management)	
	Combination with F Y M		management)	
	on the Growth, Nodulation			
	and Yield			
66.	Effect of Different Strains	W liten Singh	Agronomy	2003
00.	of Rhizobium with and	W Jiten Singh	Agronomy (Nutrient	2003
			,	
	without Nitrogenous		management)	
	Fertilizers and Phosphatica on Yield and Nutrient			
	Uptake of Pea (Pisum			
<u> </u>	sativum, L. Sensu lato)	Dl1-11	A	2005
67.	Effects of Spacing and	Phulchand	Agronomy	2005
	Levels of Phosphorus on	Moirangthem	(Nutrient	
	Growth and Yield of Broad		management)	

	Bean (Vicia faba L.) Under Late Sown Condition of Manipur			
68.	Effects of Nipping on Growth and Yield of Pea (Pisum sativum sub. Sp. Arvense) Var. Makhyatmubi	Kh Sophia Devi	Agronomy (Agro- technique)	2005
69.	Studies on Lentil (<i>Lens culinaris</i> M.) based Intercropping System with Indian Mustard (<i>Brassica juncea L.</i>) Under Upland Condition of Manipur	Diana Shamurailatpam	Agronomy (Cropping system)	2012
70.	Effect of Nipping on Growth and Yield of Different varieties of Pea (Pisum sativum supsparvense)	Thokchom Repahini	Agronomy (Agro- technique)	2013
71.	Effect of Row Spacing and Different Levels of Phosphorus on Growth and Yield of grass Pea (Lathyrus sativus L.)	Rashmi Hajong	Agronomy (Nutrient management)	2013
72.	Influence of Sulfhydryl Bio-regulator on Growth, Yield and Profitability of Lentil (<i>Lensculinaris medikus</i>) Under Restricted Irrigations	N Premaradhya	Agronomy (Agro- technique)	2014
73.	Effect of Spacing on Growth and Green pod Yield of Pea (<i>Pisum</i> sativum L. subsp. Hortense) Local Cultivar Makhyatmubi	M Manolata Chanu	Agronomy (Agro- technique)	2014
74.	Effect of Foliar Nutrition on Growth, Yield and Quality of Urd Bean (<i>Vigna mungo L.</i>)	Laishram Santosh Singh	Agronomy (Nutrient management)	2015
75.	Studies on Chickpea (Cicerarictinum L.) Based Intercroping System with Rapeseed (<i>Brassieanapus</i> L.) on Growth, Yield and Competetive Indices	Susmita Das	Agronomy (Cropping sytem)	2015
76.	Effect of Spacing and	Flora Veilalkim	Agronomy	2015

	Nipping of Growth and Seed Yield of Pea (<i>Pisum</i> sativum sbsp. hortense) Local Cultivar Makhyamubi	Baite	(Agrotechnique)	
77.	Influence of Methods of Seed Priming and Sowing Depth on the Field Germination, Growth and Yield of Desi Chickpea (Cicer arietnum) under Acidic Soil Condition	Th Tejmani Singh	Agronomy (Agro- technique)	2017
78.	Yield Performance of Different Summer Mung (Vigna radiate L.) Varieties Sown at Different Dates under Manipur Valley Condition	Langpei Pamei	Agronomy (Agro- technique)	2017
79.	Studies on Pea (<i>Pisum</i> sativum L.) based Intercropping System with Indian Mustard (Brassica juncea L.) on Growth, Yield an	Mary Chongtham	Agronomy (Cropping system)	2018
80.	Response of Broad Bean (<i>Vcia faba</i> L.) to Tillage and Crop Establishment Methods in Conjunction with Nutrient Management on Growth, Yield and Economics	Devaraja	Agronomy (Agro- technique)	2018
81.	Effect of Rice Husk Mulching on the Yield of Local Variety Pea (Makhatmubi) Pisum satvum L.	A Abel Arche	Agronomy (Agrotechniq ue)	2018
82.	Influence of Phosphorus on Growth and Yield of Promising Varieties of Lentil (<i>Lens culinaris</i> L. Medik)	Tophia Yumnam	Agronomy (Nutrient management)	2018
83.	Influence of integrated phosphorus management on the growth, yield and quality of lentil(<i>Lens culinaris</i> L. Medik)	Emmanuel Sonkarlay	Agronomy (Nutrient management)	2020

84.	Resource conservation technology in pigeonpea through tillage an mulching	Karri Pramodha Eswari Mounika	Agronomy (Agro- technique)	2020
FOD	DER			
85.	Effect of Phosphorus and Potash on Yield and Quality of Fodder Oat (<i>Avena sativa</i> L.)	Ps Rolling Anal	Agronomy (Nutrient management)	2010
86.	Effect of Nitrogen Levels on Forage Yield of Promising Varieties of Oat (Avena sativa L.)	Sonia Kamei	Agronomy (Nutrient management)	2010
87.	Effect of Nitrogen Level on the Promising Varieties of Barley (<i>Hordeum vulgare</i> L.)	Samjetsabam Neetarani	Agronomy (Nutrient management)	2012
88.	Effect of Integrated Nutrient Management on Yield and Quality of Fodder Oat (Avena sativa L.)	Z Kawikhonliu	Agronomy (Nutrient management)	2014
89.	Effect of Cutting and Nutrient Management on Growth, Green Fodder Yield, Seed Yield and Economics of Fodder Oats (Avena sativa L)	Kh Sundeep Singh	Agronomy (Nutrient management)	2016
ОТН	TERS			
90.	Management of Present and Abandoned Jhum Land in Manipur	Ayekpam Renuka Devi	Agronomy (Agro- technique)	1996
91.	Effect of Cutting Length, Sixe and Planting Growth Hormone on Sprouting and Growth of Jatropha (Jatropha cureas Linn) Setts	Ch Roben Singh	Agronomy (Agro- technique)	2007
92.	Effect of Inter and Intra row Spacings on Growth and Yield of Arrowheat (Sagittaria sagittifolia) Under Rainfed Condition of Manipur	R Joseph Koireng	Agronomy (Agro- technique)	2008
93.	Effect of spacing and root	Mutum Dinamani	Agronomy	2020

	trimming on growth, yield and economics of water Mimosa			(Agrotechnique)	
		YEAR JAN 2	2020-N	1AY 2022	
94.	Effect of Tillage and mulch in mustard (<i>Brassica juncea</i> L) under rainfed condition	Bhargavi Naga Kalyani	Agr ono my	2021	Maximum seed yield was recorded from conventional tillage with polythene mulching. But from economic point of view, the highest monetary benefit was associated with the combination of minimum tillage and rice straw mulching. Highest net energy output, energy use efficiency and lowest specific energy were found in treatment combination of minimum tillage with no mulching.
95.	Influence of Planting geometry and nutrient management on productivity and economics of dwarf Ricebean under rain-fed condition.	Khomdram Monika Devi	Agr ono my	2021	Planting geometry with wider spacing between crop rows 45cm x 10cm and nutrient management with 40 kg P_2O_5 /ha along with molybdenum and phosphate solubilizing bacteria (PSB) is the most ideal management practice for optimum seed and stover yield, crude protein content, crude protein yield. However gross income, net income and benefit-cost ratio were higher in wider spacing of 60 cm x 10cm and 60 kg P_2O_5 /ha + seed treatment of molybdenum + PSB.
96.	Influence of plant growth regulators on growth, yield and quality of lentil under rainfed condition	Vendidandi Sathavahan a Reddy	Agr ono my	2022	Lentil responded well to the different treatments of priming with plant growth regulators at all stages of observation in terms of growth, yield and quality. Among the different treatments, priming with GA3 @ 500ppm can be followed

					for better growth, yield and quality as the maximum seed yield, stover yield, crude protein content, crude protein yield, gross income, net income and benefit-cost ratio were achieved through this treatment.
97.	Influence of different application techniques of Nitrogen at seedling stage and different top dressing metho on yield of rice	Manish Pradhan	Agr ono my	2021	Root dipping of rice seedling in urea solution before transplanting and broadcasting method of nitrogen trop dressing are proven technologies in increasing of rice yield.
98.	Influence of nitrogen sources and application methods on nodulation and yield of Soybean	Immadesett y Bala Manikanta	Agr ono my	2021	Application of 75% nitrogen through Urea and 25% through poultry manure with band placement method have been proved to be the best technology in nodulation potential and yield of Soybean.
99.	"Effect of tillage and weed management practices on growth and yield of direct seeded rice (<i>Oryza sativa</i> L.) under rainfed condition".	Buru Yalung	Agr ono my	2021	Conventional tillage along with Pyrazosulfuron ethyl 10% WP at 2-3 DAS followed by Fenoxaprop-pethyl 9.3% EC at 25-30 DAS proved to be one of the most commendable treatment and can be adopted effectively and economically without notable reduction in yield from the rest of the treatments

	2. GENETICS & PLANT BREEDING					
	CATEGORY (CROP): RICE					
Sl. No.	Title of thesis	Name of the Student	Major Subject	Year of completio		
110.		Student		n		
100.	"Plant Growth Stages and Yield Evaluation of	Moirangthem	Genetics and	1995		
	some Early Rice (<i>Oryza sativa</i> L.) Genotypes	Damu Singh,	Plant Breeding			
	under Different Rice Planting Seasons of	7A-91(M)	(Varietal			
	Manipur Valley"		Evaluation)			
101.	"Genetic Divergence in the Local Rice (oryza	Laimujam Inaobi	Genetics and	1996		

	sativa L.) Cultivars of Manipur Valley"	Singh, 8A-92(M)	Plant Breeding (Diversity Analysis)	
102.	"Phenotypic Stability of Selected Rice Genotypes (<i>Oryza sativa</i> L. Sub Sp. indica) Under Rainfed Wetland Condition of Manipur Valley"	Heisnam Nanita Devi, 7A-97(M)	Genetics and Plant Breeding (Stability Analysis)	2000
103.	"Morpho-Agronomic Evaluation, Correlation and Path-Analysis in Some Early Rice (<i>Oryza</i> sativa L.) Genotypes under Pre-Kharif Conditions of Manipur Valley"	Tisu Tayeng, 13A-98(M)	Genetics and Plant Breeding (Varietal Evaluation)	2002
104.	"Line X Tester Analysis for Grain Yield and its Components in Rice (<i>Oryza sativa</i> Linn.)"	Pramesh Khoyumthem, 5A-98(M)	Genetics and Plant Breeding (Genetic Analysis)	2002
105.	"Comparative Performance, Character Association and Path Analysis for Yield and its Components of Hybrid Rice VIS-A-VIS Inbred Rice Varieties Under Rainfed Transplanted Conditions of Manipur"	Lourembam Promin, 6A-99(M)	Genetics and Plant Breeding (Varietal Evaluation)	2002
106.	"Comparative Effectiveness of Different Selection Methods on Breeding Very Early Rice (Oryza sativa L.) Varieties"	Kolom Rabi, 2A-2000(M)	Genetics and Plant Breeding (Varietal Evaluation)	2004
107.	"Genetics divergence in local rice cultivars of Manipur"	Bidya Moirangthem, 26A-07(M)	GPB (Diversity Analysis)	2009
108.	"Diallel analysis of yield and its important components in aromatic rice (<i>Oryza sativa</i> L.)"	Chuwang Hijam, 11A-08(M)	Genetics and Plant Breeding (Genetic Analysis)	2012
109.	"Screening of hill rice (<i>Oryza sativa</i> L.) Genotypes of Manipur through agromorphological, biochemical analysis and genetic diversity analysis	Sophia Longjam 30A-16 (M)	Genetics and Plant Breeding (Varietal Evaluation)	2019
110.	"Characterization and Evaluation of Aromatic Rice Genotypes of North East Region for Agronomic and Quality Traits"	Lalrinchhani Chhangte 37A-16(M)	Genetics and Plant Breeding (Varietal Evaluation)	2019
111.	"Variation for Seed Vigour and Seedling Establishment Traits in Rice (<i>Oryza sativa</i>) Genotypes from North East India"	SUSHILKUMAR S	Genetics and Plant Breeding (Evaluation of seed properties)	2019
112.	"Mutagenesis in Indigenous Semi-Glutinous Rice Genotypes of Manipur"	Elreev Rai 22A-17(M)	Genetics and Plant Breeding (Mutation	2020

			Breeding)	
113.	"Variation for aluminum tolerance in Indigenous	Kanala Sai	Genetics and	2020
	genotypes of rice from Manipur"	Sreelekha	Plant Breeding	
		23A-18(M)	(Abiotic	
			Breeding)	
114.	"Variation and character association for seed	Prapakaran M	Genetics and	2020
	yield and related traits among indigenous rice		Plant Breeding	
	(Oryza sativa L.) Genotypes of Manipur"		(Varietal	
			Evaluation)	
	SubTotal=15			

CATEGORY (CROP): MAIZE

Sl.	Title of thesis	Name of the	Major Subject	Year of
No.		Student		completion
115.	"Genetics divergence in local maize (Zea mays	Yumnam Omita	GPB	2010
	L.) cultivars of Manipur"	Devi,	(Diversity	
		17A-06(M)	Analysis)	
116.	"Variability and stability of yield and related	Magudeeswari P.	Genetics and	2018
	traits in baby corn (Zea mays L.)"	5A-16(M)	Plant Breeding	
			(Stability	
			Analysis)	
117.	"Genetic Variability and Character Association	Takhellambam	Genetics and	2019
	Analysis in Quality Protein Maize"	Thjasana Devi	Plant Breeding	
		2A-16(M)	(Varietal	
			Evaluation)	
118.	"Genetic Variability and Character Association	Danisa Dube	Genetics and	2020
	Analysis in Quality Protein Maize "	34A-18(M)	Plant Breeding	
			(Varietal	
			Evaluation)	
	SubTotal=4			

CATEGORY (CROP): OTHER CROPS

Sl.	Title of thesis	Name of	Major Subject	Year of
No.		the Student		completion
119.	"Stability Analysis for some Important	Ningombam	Genetics and Plant	1993
	Agro-Economic Characters of Sunflower	Ningthemja	Breeding	
	(Helianthus annuus L.) in Manipur"	o Singh,	(Stability Analysis)	
		3A-90(M)		
120.	"Varietal Evaluation, Correlation and Path	Dipankar	Genetics and Plant	1995
	Analysis of some Important Morpho-	Chakrabarti,	Breeding	
	Agronomic Characters in Rice Bean (Vigna	3A-91(M)	(Varietal Evaluation)	
	umbellata(Thunb.) Ohwi and Ohashi)			
	Genotypes of Manipur"			
121.	"Genetic Analysis of Yield and its	Athokpam	Genetics and Plant	1996

	T		T	
	Components in Tomato (<i>Lycopersicon esculentum Mill.</i>) in Manipur Valley	Mempishak Devi	Breeding (Genetic Analysis)	
		4A-93(M)		
122.	"Genetic Divergence in Vegetable Mustard [Brassica juncea (L.)] Czern and Coss. Ssp. integrifolia (West) Thell]"	Longjam Pradip Kumar Singh 3A-94(M)	Genetics and Plant Breeding (Diversity Analysis)	1997
123.	"Line X Tester Analysis in Rice Bean (Vigna umbellata (Thunb) Ohwi and Ohashi)"	Laimayum Ajitkumar Sharma, 5A-94(M)	Genetics and Plant Breeding (Genetic Analysis)	1998
124.	"Mutagenesis and Induced Variability in Rice Bean [Vigna umbellata (Thunb.) Ohwi and Ohashi]"	Thokchom Renuka Devi, 8A-95(M)	Genetics and Plant Breeding (Mutation Breeding)	1998
125.	"Stability Analysis in Mungbean (Vigna radiata (L) Wilczek]"	Konjengba m Noren Singh, 7A-95(M)	Genetics and Plant Breeding (Stability Analysis)	1998
126.	"Physio-Morphological Evaluation and Genetic Divergence in Pea (<i>Pisum sativum</i> L.)"	Arabinda Deb Barma, 2A-96(M)	Genetics and Plant Breeding (Varietal Evaluation and Diversity Analysis)	1999
127.	"Phenotypic Stability Analysis in Tomato (Lycopersicon esculentum. Mill.)"	Joyashree Dey, 1A-96(M)	Genetics and Plant Breeding (Stability Analysis)	1999
128.	"Genetic Divergence in Tomato (Lycopersicon esulentum Mill.)"	Rita Nongthomb am, 1A-97(M)	Genetics and Plant Breeding (Diversity Analysis)	2000
129.	"Partial Regression Analysis and Selection Indices for Simultaneous Selection in Rice Bean (Vigna umbellata(Thunb) Ohwi and Ohasi)"	Maisnam Debati Devi, 9A-97(M)	Genetics and Plant Breeding (Selection Indices)	2000
130.	"Generation Mean Analysis of Quantitative Characters in Tomato (Lycopersicon esculentum Mill.)"	Elangbam Sulodhani Devi, 12A-98(M)	Genetics and Plant Breeding (Generation Mean Analysis)	2002
131.	"Genetic Analysis in Tomato (<i>Lycopersicon esculentum</i> Mill.) under Different Environments"	Ngairangba m Sasmeeta, 7A-99(M)	Genetics and Plant Breeding (Stability Analysis)	2002
132.	"Genetic Analysis of Yield and its Attributes in Indian Mustard (Brassica	Monalisa Pukhramba	Genetics and Plant Breeding	2002

	juncea L. Czern & Coss)"	m, 8A-99(M)	(Genetic Analysis)	
133.	"Genetic Analysis of Tomato (<i>Lycopersicon esculentum</i> Mill.) Resistance to Bacterial Wilt (<i>Ralstonia solanacearum</i> Smith) Smith"	Salam Gunamani Singh, 3A- 2000(M)	GPB (Genetic Analysis)	2004
134.	"Varietal Characterization, Classification and Genetic Divergence in (<i>Phaseolus vulgaris</i> L.)"	V.L. Hmangaihc hhunga, 3A- 2001(M)	Genetics and Plant Breeding (Varietal Evaluation and Genetic Analysis)	2004
135.	"Genetic Divergence in Soybean (Glycine max L. Merill)"	K. Debadutta Sharma, 1A-99(M)	Genetics and Plant Breeding (Genetic Analysis)	2004
136.	"Stability Analysis in Rice Bean (Vigna umbellata (Thunb.) Ohwi and Ohashi)"	Shabir Hussain Wani, 5A-03(M)	Genetics and Plant Breeding (Stability Analysis)	2005
137.	"Gene action studies in tomato (Lycopersicon esculentum Mill.) involving important bacterial wilt resistant lines"	N. Rakesh Singh, 14A-06(M)	Genetics and Plant Breeding (Genetic Analysis)	2009
138.	"Gene action studies on yield and its important characteristics in Pea (Pisum sativum L.)"	Thiyam Rebika Devi, 5A-07(M)	Genetics and Plant Breeding (Genetic Analysis)	2010
139.	"Line X tester analysis for seed yield and its components and oil yield in Indian mustard [Brassica juncea (L.) Czern and Coss]"	Moirangthe m Sangeeta, 6A-07(M)	Genetics and Plant Breeding (Genetic Analysis)	2010
140.	"Stability analysis in Indian Mustard (Brassica juncea L. Czern and Coss)"	Diana Sagolsem, 21A-09(M)	Genetics and Plant Breeding (Stability Analysis)	2012
141.	"Stability analysis in groundnut (Arachis hypogaea L.)"	Mutum Suraj Singh, 13A-08(M)	Genetics and Plant Breeding (Stability Analysis)	2012
142.	"Stability analysis in lentil (Lens culinaris Medik.)"	Yumnam Indrajit Singh, 3A-10(M)	Genetics and Plant Breeding (Stability Analysis)	2012
143.	"Studies on <i>in vitro</i> anther culture of Indian mustard (<i>Brassica juncea</i> L. Czern"	N. Reetisana, 9A-10(M)	Genetics and Plant Breeding (Tissue Culture)	2012
144.	"Genetic divergence in groundnut (Arachis	Yaikhom	Genetics and Plant	2013

	hypogaea L.) using molecular markers and comparison with conventional D ² divergence analysis"	Vivekanand a, 13A-10(M)	Breeding (Genetic Analysis)	
145.	"Study on genetic variability, correlation and path analysis in chickpea (<i>Cicer arietinum</i> L.)".	Lunkim Heminlun Khongsai, 17A-10(M)	Genetics and Plant Breeding (Varietal Evaluation)	2013
146.	"Study of Mutagenic Effect of EMS on Field Pea (Pisum sativum L. var. arvense)"	Ravi Raj Singh Patel, 24A-12(M)	Genetics and Plant Breeding (Mutation Breeding)	2014
147.	"Assessment of Genetic Diversity in Indian Mustard (<i>Brassica juncea</i> L. Czern and Coss) Genotypes for Agro-morphological Parameters"	Nongmaithe m Devshini Devi, 15A-13(M)	Genetics and Plant Breeding (Diversity Analysis)	2015
148.	"Combining Ability Studies in Field Pea (<i>Pisum sativum</i> L. var. <i>arvense</i>) for Yield and its Attributes"	Manish Kumar, 4A-13(M)	Genetics and Plant Breeding (Genetic Analysis)	2015
149.	Character association and variability studies and trait on mungbean (<i>Vigna radiata</i> L.)Wilzeck.	Konsamcha Shyamanan da. 20A-11 (M).	Genetics and Plant Breeding (Varietal Evaluation)	2015
150.	"Genetic divergence in black gram (Vigna mungo)"	Sunder Nongthomb am 7-A-11(M)	Genetics and Plant Breeding (Diversity Analysis)	2015
151.	"Analysis of gene effects controlling yield contributing traits in grasspea (Lathyrus sativus L.)"	Roda Gonmei 24A-14(M)	Genetics and Plant Breeding (Genetic Analysis)	2016
152.	"Induced Variability in Adapted Cultivars/Varieties of Indian Mustard (<i>Brassica juncea</i> L. Czern and Coss) by using Gamma Rays"	Takhellamb am Julia 23A-14(M)	Genetics and Plant Breeding (Mutation Breeding)	2016
153.	"Combining ability analysis of yield and yield contributing characters of groundnut (Arachis hypogea L.)"	Hijam Premila Chanu CAU/787- A/10(B)	Genetics and Plant Breeding (Genetic Analysis)	2016
154.	"Genetic diversity among soybean [Glycine max (L.) Merrill] genotypes based on agromorphological parameters under rainfed condition of Manipur"	Homichon Sareo 33A-14(M)	Genetics and Plant Breeding (Diversity Analysis)	2016
155.	"Agro-morphological and Quality Characterization of Some Rice (<i>Oryza</i> sativa L.) Genotypes in Manipur"	Bomit Lourembam 37A-14(M)	Genetics and Plant Breeding (Varietal Evaluation)	2016

	_		,	
156.	"Combining ability studies in lentil for yield ant its attributes"	Supriya Majumder 19A-15(M)	Genetics and Plant Breeding (Genetic Analysis)	2017
157.	"Study of mutagenic effects of sodium azide on field pea (<i>Pisum sativum</i> L. arvense)"	Th. Nepolian Singh 16A-15(M)	Genetics and Plant Breeding (Mutation Breeding)	2017
158.	"Genetic variability study using SSR markers in chickpea (Cicer arietinum L.)"	Krishna Murari Prasad CAU/337- A/15(M)	Genetics and Plant Breeding (Marker Assisted Breeding)	2017
159.	"Molecular characterization of soybean [Glycine max (L.) Merril] genotypes using SSR markers"	Daisy Zirthansang i 29A-15(M)	Genetics and Plant Breeding (Marker Assisted Breeding)	2017
160.	"Line x Tester Analysis For Yield And Its Contributing Characters In Field Pea"	Soibam Tampha Devi 23A-16(M)	Genetics and Plant Breeding (Genetic Analysis)	2018
161.	"Genetic Diversity Analysis of Indian Mustard Genotypes Using SSR Markers"	Haobam Kholchandr a Singh 20A-15(M)	Genetics and Plant Breeding (Diversity Analysis)	2018
162.	"Genetic variability for yield related traits and resistance to late leaf spot in Groundnut (Arachis hypogea L.)"	Vanlalrohlu puii CAU/328- A/16(M)	Genetics and Plant Breeding (Varietal Evaluation)	2019
163.	"Selection Indices for Improving Seed Yield in Soybean (<i>Glycine max</i> (L.) Merrill under Manipur Condition"	P. Manjunath 25A-17(M)	Genetics and Plant Breeding (Selection Indices)	
164.	"Genetic Variability and Character Association Studies for Higher Grain Yield and its Component Traits in M4 Mutant Lines of Indian Mustard (<i>Brassica juncea</i> L. Czern and Coss)	Ippa Srujan Kumar 34A-17 (M)	Genetics and Plant Breeding (Varietal Evaluation)	2019
165.	"Genetic divergence in lentil (<i>Lens culinaris</i> M.)	Sakthivel G 4-A-17 (M)	Genetics and Plant Breeding (Diversity Analysis)	2019
	YEAR JAN 2020-MAY 2022			
166.	Genetic diversity analysis in Blackgram (Vigna mungo L. Hepper)	Mr. Dondiba Kundagar [49A- 18(M)]	On the basis of interdistances, cluster mose performance reversional formula of the basis of interdistances, cluster mose performance reversional formula of the basis of interdistances, cluster mose for performance reversional formula of the basis of interdistances, cluster mose for performance reversional formula of the basis of interdistances, cluster mose for performance reversional formula of the basis of interdistances, cluster mose for performance reversional formula of the basis of interdistances, cluster mose for performance reversional formula of the basis of interdistances, cluster mose for performance reversional for performanc	eans and per caled that the well diverged can be

				programme of crop improvement
167.	Diallel analysis of yield and its important components in wheat (<i>Triticum aestivum</i> L.)	Mr. Vikash Kumar Jalaj [27A- 17(M)]	2021	There is considerable scope for improving the 10 genotypes used in the research through purelines and heterosis breeding too for yield and its related components.
168.	Genetic divergence studies in filed pea (Pisum sativum L.)	Mr. Masadi Sunil Kumar [53A- 19(M)]	2021	On the basis of inter cluster distances, cluster means and <i>per se</i> performance revealed that the 47 genotypes were well diverged indicating that these can be further utilized in hybridization programme of improvement for yield and its components
169.	Character association and divergence studies in Lentil (<i>Lens culinaris</i> M.)	Mr. Seetha Ramaiah Kammela [17A- 19(M)]	2021	The sixty genotypes under study are well diverse and hybridization programme can be taken up for improvement for yield and its components.
170.	Genetic variation for grain and its quality parameters in stable mutant lines of black aromatic rice of Manipur	Mr. Pittala Ravichnadr a [16A- 19(M)]	2022	There is substantial genetic diversity among the genotypes under study, and they can be utilized for further crop improvement programme.
171.	Genetic variation for seed and seed related characters in indigenous rice genotypes of Arunachal Pradesh	Ms. Chamin Chimyang [8-A-19(M)	2021	Some of the genotypes viz., Sakant, Twisa and Wedikachah are more preferable by the consumers due to its soft gel and sticky nature. And upland rice is very sensitive towards iron stress as compared to lowland rice.
172.	Genetic divergence among elite soybean (Glycine max L. Merrill) genotypes based on agro-morphological traits	Ms. Kolisetti Lakshmi Sai Mounika [19A- 19(M)]	2021	On the basis of inter cluster distances, cluster means, per se performance and contribution of individual characters towards divergence revealed that the 100 genotypes were well diverged indicating that these can be further utilized in hybridization programme of improvement for yield and its components.
173.	Genetic assessment for seed yield and its contributing traits in yellow sarson	Mr. Raaghul R	2022	On the basis of inter cluster distances, cluster means, <i>per se</i>

	(Brassica rapa var. Yellow Sarson) under natural field conditions of Manipur Valley 3 AGRICULTU	[20A- 19(M)]	performance and co- individual character divergence reveale genotypes were wel- indicating that these further utilized in h- programme of imprayield and its compo	rs towards d that the 30 ll diverged e can be ybridization ovement for
Sl. No.	Title of thesis	Name of student	Major subject	Year of completio
				n
RICE		T	1	<u> </u>
174.	Economics of Upland Rice Production in Manipur	Ms. Sylvia Moirangthem	Production Economics	2009
175.	Economics of Production and Marketing of Value Added Products of Paddy in Valley Region of Manipur	Ms. Sorensangbam Jarita Devi	Production Economics Agricultural Marketing	Jan. 2010
176.	Resource Use and Technical Efficiency of Rice Production in Manipur	Ms. Leishangthem Geetarani Devi	Production Economics	April, 2012
177.	Economics of Hybrid and Improved Varieties of Rice Production in Manipur: A Comparative Study	Mr. Yumnam Santosh Singh	Production Economics	July. 2012
178.	Economic Analysis of Wet Rice Cultivation in Champhai District of Mizoram.	Ms. Lalhmingmawii Ralte	Production Economics	Aug. 2015
179.	Production and Marketing of Low-land Rice in Ri-Bhoi District of Meghalaya	Ms. Badondor Khongshei	Production Economics Agricultural Marketing	Sep. 2016
180.	Economic Analysis of Black Rice Production in Imphal East and Imphal West Districts of Manipur	Mr. Pradeep Kumar	Production Economics	June 2017
181.	Economics of Production and Marketing of Value Added Products of Paddy in Valley Region of Manipur	Ms. Sorensangbam Jarita Devi	Production Economics Agricultural Marketing	Jan. 2010
VEGI	ETABLE			
182.	Resource Use and Marketing Efficiency of Tomato Production in Manipur	Ms. Konjengbam Kamala Devi	Production Economics	2009

			Agricultural	
			Marketing	
183.	Economics of Production and Marketing of	Mr. Sarangthem	Production	2010
	Potato in Thoubal District of Manipur	Biroj Singh	Economics	
			Agricultural	
			Marketing	
184.	Economics of Cauliflower Production and	Mr. Ningombam	Production	2011
	Marketing in Valley Districts of Manipur	Anandkumar	Economics	
		Singh	Agricultural	
107		M C ·	Marketing	2012
185.	Economics of Cabbage Production and	Ms. Sonia	Production	2012
	Marketing in Valley Districts of Manipur	Sagolsem	Economics	
			Agricultural Marketing	
186.	A Study of Technical and Marketing Efficiency	Ms.Pebam	Production	2014
100.	of Tomato in Bishnupur District of Manipur	Roshni Devi	Economics	2014
	of Tomato in Dismapar District of Mampar	Rosinii Devi	Agricultural	
			Marketing	
187.	Economics of Winter Vegetables Marketing in	A. Elavarson	Production	2019
	Bishnupur District of Manipur		Economics	
			Agricultural	
			Marketing	
an a	_			
SPIC:		N. C. 1 N.	D 1	2014
188.	Economics of Turmeric Production and	Mr. Sandeep M.	Production	2014
	Marketing in West Garo Hills District in	Sangma	Economics	
	Meghalaya.		Agricultural Marketing	
			Marketing	
FRUI	${f T}$			
189.	Economics of Production and Marketing of	Ms. Laxmi	Production	2011
	Pineapple in Thoubal District of Manipur	Thingbaijam	Economics	
			Agricultural	
			Marketing	
190.	Economics of Pineapple Production and	Mr. Doni Sanjay	Production	2018
	Marketing in West Siang District of Arunachal	Taniang	Economics	
	Pradesh		Agricultural	
			Marketing	
	NTATION CROP			T
191.	Economic Study of Small Tea Growers in Ri-	Mr.Kynpham Bor	Production	2016
	Bhoi District, Meghalaya	Dkhar Sawian	Economics	
				<u> </u>

192.	Economic Analysis of Fish Farm Production in Thoubal District of Manipur	Ms. Abhujam Anuradha Devi	Production Economics Agricultural Marketing	2009
193.	An Economic Analysis of Production and Marketing of Inland Fish in Imphal West District of Manipur.	Ms.Zimisai Saikhom	Production Economics Agricultural Marketing	2012
194.	Economics of Fish Production and Marketing in West Tripura District of Tripura	Mr. Biman DebBarma	Production Economics Agricultural Marketing	
195.	Production and Marketing of Composite Fish Farms in Bishnupur District of Manipur	Mr. Ahanthem Ronel Singh	Production Economics Agricultural Marketing	2015
LIVE	STOCK AND POULTRY	,		
196.	Economics of Broiler Production and Marketing in Imphal Districts of Manipur	Ms. Carina Watham	Production Economics Agricultural Marketing	2010
197.	Economics of Pig Production and Marketing in Imphal West District of Manipur	Mr. H. Lalnunsanga	Production Economics Agricultural Marketing	2018
DAIR	Y			
198.	Economics of Milk Production and Marketing in Imphal West District of Manipur	Mr. Leishangthem Menankumar Singh	Production Economics Agricultural Marketing	2015
199.	Economics of Milk production and Marketing in Thoubal District of Manipur	O. Krishnadas Singh	Production Economics Agricultural Marketing	2019
MUL	TIPLE ENTERPRISE			
200.	An economic analysis of Paddy-Fish farming system in Bishnupur district of Manipur.	Th. Kanyalaxmi Devi	Production Economics Agricultural Marketing	2020
RUR	AL DEVELOPMENT			
201.	Impact Analysis of National Rural Employment Guarantee Act (NREGA) in Imphal-West District Manipur	Mr. GunoyThokchom	Rural Development	2012
202.	Socio-Economic Analysis of Sagolkhong Watershed Development Project: A Case Study	Mr.Thokchom Motilal Singh	Rural Development	2005

		YEAR JA	N 2021- MAY	2022	
Sl.	Title of Thesis	Name of the	Major	Year of	Outcome of the research
No.		student	Subject	completion	work (2-3 lines)
203.	Production and	Mr. Kenjit	Agri-	2021	French bean growing
	marketing of French	Tongbram	Economics		farmers are in the age group
	bean in Bishnupur district of Manipur-	[32A-18(M)]			of 36-45 years. The crop in the sample area
	An economic				is marketed through village
	analysis				traders. In order to improve
	allary 515				the productivity and profit of
					the farmers, improvement of
					existing system varieties,
					irrigation facilities, farm
					mechanization and timely
					availability of farm inputs.
204.	A study on climate	Mr. Manoj	do	2022	The decline in the area and
	change effect on	Kumar N			yield of large cardamom was noticed in the area which
	large cardamom based spice economy	[44A-19(M)]			was due to high disease
	of East Sikkim				infestation. There is need for
	District in Sikkim				a disease resistant and
					climate resilient variety of
					large cardamom.
205.	Economics of	Ms. Gayathri H	do	2021	Cultivation of rapeseed and
	production of	[48A-18(M)]			mustard under zero tillage is
	Rapeseed and				profitable. In order to
	mustard in Imphal West district of				improve the cultivation inputs and production
	Manipur				inputs and production technology should be made
	Manipui				available to farmers in time
					so that livelihood conditions
					of farmers can be improved.
206.	Study on yield gap in	Ms. Siripuram	do	2021	The yield analysis revealed
	milk production and	Haripriya			a considerable difference in
	disposal pattern in	[31A-19(M)]			the milk yield of CB cows in
	Imphal West district				progressive dairy farms and
	of Manipur				average dairy farms. Experience and management
					practice of progressive
					farmers may be transferred
					to other farmers through
					demonstration, thereby
					reducing the milk yield gap.

					As there is no organized marketing channel, there is a need for cooperative and regulated markets in the district.
207.	Effect of climate change on the livelihood of turmeric growers in Lunglei District of Mizoram State	Mr. Chetan A Iragar [21A-19(M)]	do	2022	Due to lack of marketing facility, cultivation of turmeric has been found to be decreasing. Some farmers replaced it with plantation crops, Whereas others left the land as such. There is need for awareness programmes related to climate change in the study area.
208.	Production and marketing of organic large cardamom in West District of Sikkim	Ms.Sushnim Golay [40-A-18(M)]	Do	2021	Organic large cardamom cultivation is found to be economically and financially viable. In this direction, state government should take up strong initiative for expansion of area under the crop by providing incentives and other technical support in collaboration with research institution.

PLANT PATHOLOGY M.Sc., Plant Pathology								
Sl. No.	Title of Thesis (M.Sc.(Agri)	Name of the Student	Major Year of Com		pletion			
Nam	e of Category (Crop) Rice			•				
209.	Morphological characters on Culture Media, Hyphal Anatomosis and Virulence Pattern of Some Isolates of <i>Rhizoctonia solani</i> , causing Sheath Blight of Rice.	Kumari Phanjouba Premila Devi	Plant Pathology (Variability) and Diversity)		1994			
210.	Control of <i>Rhizoctonia Solani</i> Kuhn. Causal Agent of Sheath Bligh of Rice	Shri Thangjam Krishnachandra Singh	Plant Pathology (Chemical management)		1995			
211.	Studies on seedling blight of Rice caused by <i>Sclerotium rolfsii</i> Sacc. in Manipur	Muhammed Hifijur Rahman	Plant Pathology (Chemical management)		1995			
212.	Rice Grain Discoloration In Manipur	Shakhitombi	Plant Pathology (Disease Incidences)		1995			

2002 2009 2010 2019
2002 2009 2010 2019
2002 2009 2010 2019
2002 2009 2010 2019
2009 2010 2019
2010
2010
2019
2019
1
1
2019
2019
2019
1992
1992
2002
2002
2000
2015
2005
2015
,
1995
2008
2010
2011
t)

230.	Studies on Variability of Native Trichoderma spp. ad Their In-vitro Effect on Sclerotium rolfsii Sacc. Causing Collar Rot of Chilli.	V. Bhuvaneswari	Plant Pathology (Biocontrol-variability)		2019
231.		Sapam Monteshori	Plant Pathology (Plant Virus-Disease incidence)		2013
232.	Studies on Major Fungal diseases of Chilli &their Management in Manipur.	Leena Bongshing	Plant Pathology (Management)		2000
233.	Morphological and Molecular Variability of Collectrotrichum capsici causing Anthracnose of Chilli in Valley Districts of Manipur and its Management	Roseline Salam	Plant Pathology (Variability-Management0		2018
Nam	ne of Category (Crop)- Maize				
234.	Detection of Seed borne fungi of Maize (Zee Mayas L.) and its management	Tayenjam Dipu	Plant Pathology (Detection and Manageme nt)	2012	
Nam	ne of Category (Crop)- Groundnut		,		
235.	Exploration of Native <i>Trichioderma</i> Species for the management of Stem Rot of Ground nut (<i>Arachis hypogeae</i> L.) caused by <i>Sclerotium rolfsii</i> Sacc.	Khwairakpam Rashmi	Plant Pathology (Biocontrol - Manageme nt)	2014	
236.	Management of Tikka disease of Groundnut (Arachis hypogaea).	Rosangpuii	Plant Pathology (Disease incidence and Manageme nt)	2017	
Nam	e of Category (Crop)- Broad bean		1 7		
237.	Physiology and Management of <i>Alternaria</i> Altrnata (Fr.) Keissler Causing Broadbean(Vicia Faba L.) Leaf Blight	David Kamei	Plant Pathology (Manageme nt)	2002	
238.	Studies on Canker of Broadbean and its Management	N.Ibohal Singh	Plant Pathology (Manageme nt)	2002	

Nam	e of Category (Crop)- Tomato			
239.	Cultural Morphology, Physiological Characteristics and Management of <i>Alternaria Solani</i> (Ellis and Mart) Jones and Grout Causing Fruit Rot of Tomato. (CROP- Tomato)	N. Olivia Devi	Plant Pathology (Manageme nt)	2002
Nam	e of Category (Crop)- Potato			
240.		Ksh. Kunjaraj Singh	Plant Pathology (Virus- Manageme nt)	2002
241.	Status of PotatoLeaf roll Virus in Plain areas of Manipur and its Management.	Thokchom Nimaichand Singh	Plant Pathology (Virus- Manageme nt)	2002
242.	Status of Early Blight and Alternaria Solani(F&M)Jones and Grout of Potato (Solanum tuberosum L.) and its Management.	N. Madhuraja Singh	Plant Pathology (Manageme nt)	2002
243.	Effect of Native Trichoderma Spp. on Management of Important Fungal Diseases of Potato in Manipur.	Ravi Regar.	Plant Pathology (Biocontrol Manageme nt)	2002
Nam	e of Category (Crop)- Mustard			
244.		Mihir Lal Das	Plant Pathology (Virus- Manageme nt)	2002
245.	Studies on Transmissionn and Management of Mosaic disease of Broad leaf Mustard (<i>Brassica Juncea</i> Var. <i>Rusosa Roxb. Tsen and Lee</i>)	Laishram Ranjana Devi	Plant Pathology (Manageme nt)	2002
246.	Insect Transmission of Mosaic Diseases of Broad Leaf Mustard and Influence of Certain Organic Products on it Transmission by <i>Myzus perpicae</i> Slz.	Samuel Lalliansanga Pacruan	Plant Pathology (Manageme nt)	2002
247.	Studies on Wilt of Rapeseed caused by Fusarium moniliforme Sheld.	Ngangbam Anita Devi	Plant Pathology (Manageme	2002

			nt)	
240	Management of White stam of Denosed and	D V Nimmomo	nt) Plant	2002
248.	Management of White stem of Rapeseed and	R.K. Nirupama		2002
	Mustard by Native Trichoderma species.		Pathology	
			(Biocontrol	
			-	
			Manageme	
			nt)	
249.	Evaluation of local Cultivars of Rapeseed	Sahena	Plant	2002
	and Mustard against White Rust caused by	Tongbram	Pathology	
	Albugo candida and Management of the	_	(Manageme	
	disease.		nt)	
250.	Studies on Alternaria Leaf Blight of	Angela Laltanpui	Plant	2002
	Rapeseed and Mustard.	8	Pathology	
	<u>F</u>		(Manageme	
			nt)	
251.	Reaction of <i>Albugo candida</i> to local	Tusi chakma	Plant	2002
<i>∠</i> J1.	cultivars of rapeseed and Mustard in	1 doi Chakilla	Pathology	2002
	Manipur.		(Host	
	Mampur.		Pathogen	
			Interaction)	
			interaction)	
NI	of Catalogue (Court) Circum			
	e of Category (Crop)- Ginger	TT1 1 1 C '''	DI 4	2002
252.	Biocontrol of Soft Rot of Ginger (Zingiber	Thokchom Surjit	Plant	2002
	officinale Rosc.) by Trichoderma species.	Singh	Pathology	
			(Biocontrol	
			-	
			Manageme	
			nt)	
NT.				
A	$\mathbf{e}_{\mathbf{G}}$			
	ne of Category (Crop)- Brinjal	D. 1	DI .	2002
253.	Leaf Mold of Brinjal (Cladosporium fulvum	Prashant	Plant	2002
		Prashant	Pathology	2002
	Leaf Mold of Brinjal (Cladosporium fulvum	Prashant	Pathology (Manageme	2002
253.	Leaf Mold of Brinjal (<i>Cladosporium fulvum</i> Cooke) and its management.		Pathology (Manageme nt)	
	Leaf Mold of Brinjal (<i>Cladosporium fulvum</i> Cooke) and its management. Cultural, Morphological Characteristics and	Prashant K.Beiralua	Pathology (Manageme nt) Plant	2002
253.	Leaf Mold of Brinjal (<i>Cladosporium fulvum</i> Cooke) and its management. Cultural, Morphological Characteristics and its Management of <i>Phomopsis Vexans</i> (<i>Sacc</i> .		Pathology (Manageme nt) Plant Pathology	
253.	Leaf Mold of Brinjal (<i>Cladosporium fulvum</i> Cooke) and its management. Cultural, Morphological Characteristics and its Management of <i>Phomopsis Vexans</i> (<i>Sacc</i> . & <i>Syd</i> .) Harter the causal Pathogen of Brinjal		Pathology (Manageme nt) Plant	
253.	Leaf Mold of Brinjal (<i>Cladosporium fulvum</i> Cooke) and its management. Cultural, Morphological Characteristics and its Management of <i>Phomopsis Vexans</i> (<i>Sacc</i> .		Pathology (Manageme nt) Plant Pathology	
253.	Leaf Mold of Brinjal (<i>Cladosporium fulvum</i> Cooke) and its management. Cultural, Morphological Characteristics and its Management of <i>Phomopsis Vexans</i> (<i>Sacc</i> . & <i>Syd</i> .) Harter the causal Pathogen of Brinjal		Pathology (Manageme nt) Plant Pathology (Diversity-	
253.	Leaf Mold of Brinjal (<i>Cladosporium fulvum</i> Cooke) and its management. Cultural, Morphological Characteristics and its Management of <i>Phomopsis Vexans</i> (<i>Sacc</i> . & <i>Syd</i> .) Harter the causal Pathogen of Brinjal		Pathology (Manageme nt) Plant Pathology (Diversity- Manageme	
253.254.	Leaf Mold of Brinjal (<i>Cladosporium fulvum</i> Cooke) and its management. Cultural, Morphological Characteristics and its Management of <i>Phomopsis Vexans</i> (<i>Sacc. &Syd.</i>) Harter the causal Pathogen of Brinjal Fruit Rot	K.Beiralua	Pathology (Manageme nt) Plant Pathology (Diversity- Manageme nt)	2002
253.254.	Leaf Mold of Brinjal (<i>Cladosporium fulvum</i> Cooke) and its management. Cultural, Morphological Characteristics and its Management of <i>Phomopsis Vexans</i> (<i>Sacc. & Syd.</i>) Harter the causal Pathogen of Brinjal Fruit Rot Morphological , Physiological and Molecular Characterization of <i>Alternaria alternate</i>	K.Beiralua	Pathology (Manageme nt) Plant Pathology (Diversity- Manageme nt) Plant Pathology	2002
253.254.	Leaf Mold of Brinjal (<i>Cladosporium fulvum</i> Cooke) and its management. Cultural, Morphological Characteristics and its Management of <i>Phomopsis Vexans</i> (<i>Sacc. & Syd.</i>) Harter the causal Pathogen of Brinjal Fruit Rot Morphological , Physiological and Molecular	K.Beiralua	Pathology (Manageme nt) Plant Pathology (Diversity- Manageme nt) Plant	2002
253.254.	Leaf Mold of Brinjal (<i>Cladosporium fulvum</i> Cooke) and its management. Cultural, Morphological Characteristics and its Management of <i>Phomopsis Vexans</i> (<i>Sacc. & Syd.</i>) Harter the causal Pathogen of Brinjal Fruit Rot Morphological , Physiological and Molecular Characterization of <i>Alternaria alternate</i>	K.Beiralua	Pathology (Manageme nt) Plant Pathology (Diversity- Manageme nt) Plant Pathology	2002
253.254.255.	Leaf Mold of Brinjal (<i>Cladosporium fulvum</i> Cooke) and its management. Cultural, Morphological Characteristics and its Management of <i>Phomopsis Vexans</i> (<i>Sacc. & Syd.</i>) Harter the causal Pathogen of Brinjal Fruit Rot Morphological , Physiological and Molecular Characterization of <i>Alternaria alternate</i>	K.Beiralua	Pathology (Manageme nt) Plant Pathology (Diversity- Manageme nt) Plant Pathology	2002

	Decline in Perspective of Plant Pathology in Manipur.	Lalduhzuali	Pathology (Detection)	
Nam	e of Category (Crop)- Papaya			
257.	Characterization, Genetic Diversity and Development of Immunocapture-Reverse Transciption -PCR based Diagnostics for <i>Papaya ring spot virus</i> , prevalent in Manipur.	Prateek Ranjan Behera	Plant Pathology (Detection)	2002
Nam	e of Category (Crop)- Blackgram			
258.		Thoidingjam Jugitabali Devi	Plant Pathology (Detection)	2002
Nam	e of Category (Crop)- Turmeric			
	Leaf spot disease of turmeric (Curcuma Longa L.) and its management.	Yanglem Herojit	Plant Pathology (Manageme nt)	2002
Nam	e of Category (Crop)- Soybean			
260.		C.Lalhruaitluangi	Plant Pathology (Bocontrol- Manageme nt)	2002
Nam	e of Category (Crop)- Mango			
261.	Studies on Anthracnose Diseases of Mango in Manipur	N. Ingobi Singh	Plant Pathology (Manageme nt)	2002
262.	Studies on wither tip of mango (Mangifera Indica Lin.) and its Management.	Kripalini Ningombam	Plant Pathology (Manageme nt)	2002
263.	Grey Leaf Spot of Mango (<i>Mangifera indica</i> L.) and its management.	M.Indira Devi	Plant Pathology (Manageme nt)	2002
264.	Variability & Molecular Characterization of Pestalotiopsis mangiferae Bult. Causing Grey Leaf Spot of Mango	Ch. Inao Khaba	Plant Pathology (Variability)	2002
265.	Post Harvest Diseases of Mango (Mangifera	Rahee Bui	Plant	2002

	indica L.)			Pathology	
				(Post	
				Harvest-	
				Manageme	
				nt)	
Nam	ne of Category (Crop)- Banana				
266.		Pr	rema Devi	Plant	2002
	var. Dwarf Cavendish ad its management.	H	emam	Pathology	
				(Manageme	
				nt)	
267.	Major Fungal Diseaes of Mature Banana	Y	ogesh Sharma	Plant	2002
	Fruit and its Managment in Manipur.			Pathology	
				(Manageme	
				nt)	
Nam	ne of Category (Crop)- Citrus				
268.		A	pswari	Plant	2002
	Management		lurasing	Pathology	
			C	(Manageme	
				nt)	
269.	Present Scenario of Citrus Die-Back and its	La	aishram Reenita	Plant	2002
	Management	D	evi	Pathology	
				(Manageme	
				(Manageme nt)	
	ne of Category (Crop)- Guaya			,	
	ne of Category (Crop)- Guava Leaf Spot Disease of Guava (Psidium	L.	Gorvachov	,	2002
Nam 270.	Leaf Spot Disease of Guava (Psidium			nt)	2002
			Gorvachov	nt) Plant Pathology	2002
	Leaf Spot Disease of Guava (Psidium			nt)	2002
270.	Leaf Spot Disease of Guava (<i>Psidium guajava</i> L.) and its management.			Plant Pathology (Manageme	2002
270.	Leaf Spot Disease of Guava (<i>Psidium guajava</i> L.) and its management. The of Category (Crop)- Marigold	Sin	ngh	Plant Pathology (Manageme nt)	
270. Nam	Leaf Spot Disease of Guava (<i>Psidium guajava</i> L.) and its management. The of Category (Crop)- Marigold Morphological and Molecular Characterizations.	Sin	ngh Tokmem	Plant Pathology (Manageme nt) Plant	2002
270.	Leaf Spot Disease of Guava (<i>Psidium guajava</i> L.) and its management. te of Category (Crop)- Marigold Morphological and Molecular Characterization of <i>Alternaria</i> spp. Causing Alternaria Blight	Sin	ngh	Plant Pathology (Manageme nt) Plant Pathology	
270.	Leaf Spot Disease of Guava (<i>Psidium guajava</i> L.) and its management. The of Category (Crop)- Marigold Morphological and Molecular Characterizations.	Sin	ngh Tokmem	Plant Pathology (Manageme nt) Plant	
270. Nam	Leaf Spot Disease of Guava (<i>Psidium guajava</i> L.) and its management. te of Category (Crop)- Marigold Morphological and Molecular Characterization of <i>Alternaria</i> spp. Causing Alternaria Blight	Sin	ngh Tokmem	Plant Pathology (Manageme nt) Plant Pathology (Variability -	
270.	Leaf Spot Disease of Guava (<i>Psidium guajava</i> L.) and its management. te of Category (Crop)- Marigold Morphological and Molecular Characterization of <i>Alternaria</i> spp. Causing Alternaria Blight	Sin	ngh Tokmem	Plant Pathology (Manageme nt) Plant Pathology (Variability - Manageme	
270. Nam 271.	Leaf Spot Disease of Guava (<i>Psidium guajava</i> L.) and its management. The of Category (Crop)- Marigold Morphological and Molecular Characterization of <i>Alternaria</i> spp. Causing Alternaria Blight Marigold and its Management.	Sin	ngh Tokmem	Plant Pathology (Manageme nt) Plant Pathology (Variability -	
Nam 271.	Leaf Spot Disease of Guava (<i>Psidium guajava</i> L.) and its management. The of Category (Crop)- Marigold Morphological and Molecular Characterization of <i>Alternaria</i> spp. Causing Alternaria Blight Marigold and its Management. The of Category (Crop)- Sunflower	ion of	Tokmem Siram	Plant Pathology (Manageme nt) Plant Pathology (Variability - Manageme nt)	2002
270. Nam 271.	Leaf Spot Disease of Guava (<i>Psidium guajava</i> L.) and its management. The of Category (Crop)- Marigold Morphological and Molecular Characterization of <i>Alternaria</i> spp. Causing Alternaria Blight Marigold and its Management. The of Category (Crop)- Sunflower Studies on Stella Rot of Sunflower	ion of	ngh Tokmem	Plant Pathology (Manageme nt) Plant Pathology (Variability - Manageme nt) Plant	
Nam 271.	Leaf Spot Disease of Guava (<i>Psidium guajava</i> L.) and its management. The of Category (Crop)- Marigold Morphological and Molecular Characterization of <i>Alternaria</i> spp. Causing Alternaria Blight Marigold and its Management. The of Category (Crop)- Sunflower Studies on Stella Rot of Sunflower Caused by Alternaria alternate(Fr.)	ion of	Tokmem Siram	Plant Pathology (Manageme nt) Plant Pathology (Variability - Manageme nt) Plant Pathology	2002
Nam 271.	Leaf Spot Disease of Guava (<i>Psidium guajava</i> L.) and its management. The of Category (Crop)- Marigold Morphological and Molecular Characterization of <i>Alternaria</i> spp. Causing Alternaria Blight Marigold and its Management. The of Category (Crop)- Sunflower Studies on Stella Rot of Sunflower	ion of	Tokmem Siram	Plant Pathology (Manageme nt) Plant Pathology (Variability - Manageme nt) Plant	2002

Nam	e of Category (Crop)- Others				
273.	and Plant Extracts on Phyto pathogenic Fungi	Sharmila Naorem	Plant Pathology (Biocontrol, Plant Extracts-Management)		2002
274.	Studies on Damping -off of Vegetable Seeds and its Management.	Salma Begum	Plant Pathology (Management)		2002
275.	Mass Production of <i>Trichoderma Viride</i> with locally available materials.	Markidahun Biam	Plant Pathology (Biocontrol mass production)		2002
276.	Morphological and Molecular Variability of <i>Sclerotium</i> <i>rolfsii. Sacc</i> and <i>in vitro</i> Management.	K. Dinesh	Plant Pathology (Variability-Manage	ement)	2002
277.	Management of Soil Borne Diseases of Chickpea (<i>Cicer arietinum</i> L.) by Native <i>Trichodderma</i> Species.	W. Tampakleima Chanu	Plant Pathology (Biocontrol-Manage	ment)	2002
278.	Management of <i>Fusarium</i> Wilt of Pea (<i>Pisum sativum</i> L.) by Native <i>Trichoderma</i> in Manipur.	Dipika Debbarma	Plant Pathology (Management)		2002
279.	Studies on <i>Fusarium</i> wilt of Pigeon pea and <i>In vitr</i> o Management	Poorvasandhya R.	Plant Pathology (Management)		2002
		YEAR JAN 2020	- MAY 2022		
280.	Study on the Effect of Temeperature, pH and Sugar on Growth of Lasiodiplodia theobromae Associated with Tree Bean Decline under in vitro Condition	Sruti Ranote		2021	i) Increase in temperature and sugar concentration found favourable for growth of <i>L. theobromae</i> ii) pH, temperature and sugar concentration separately and in combination significantly affected the growth of <i>L. theobromae</i> .
281.	Management of Fusarium Wilt of tomato (Lycopersicum esculentum Mill.) by Liquid formulation of Tricoderma spp.	Yengkhom Premica Devi	Plant Pathology 2	2021	i) <i>T.viride</i> treated plot showed 9.52% of disease incidence as compare to 24.40% in control plot <i>ii) T. viride</i> treatment plot showed increase in fruit number and yield of 3.37 benefit cost ratio.

	3. EXTENSION EDUCATION							
Sl.	Title of M.Sc. (Ag) Thesis	Name of	Major Subject (Extension Education)		Year of Completion			
No		Student & Adm. No.	Major Subject	Cereals/ Vegetables/ Technology				
282.	Decision-Making Behaviour of the Farm Woman (The Meiteis) in Agriculture	Ms. T. M. Chanu	Decision- Making Behaviour	Farm Women in Agriculture	11-07-06			
283.	A Study on Correlation Between Crop Productivity and Selected Characteristics of Farmers in Sikkim	Mr. Bhishon Pradhan	Crop Productivity	Cereals	12-09-07			
284.	Training Need Areas of potato Growing Tribal Farm Women in Meghalaya	Ms. Sanchita Roy	Training Need Assessment	Potato	05-01-08			
285.	Impact of Activities of KVK with Special Reference to Dissemination of Rapeseed Mustard Production Tech. in South Tripura District (Tripura)	Mr. Guru Prasad Kar	Impact of Activities of KVK	Rapeseed Mustard	03/09/08			
286.	Study on Effectiveness of women SHGs on Imphal East District Manipur	Ms. K. Tamphasan a	Effectivenes s of women SHGs	Women SHGs	16-02-09			
287.	A Study on the Entrepreneurial Behaviour of Vegetable Grower in Bishnupur District of Manipur	Mr.S. Sadananda Singh	Entrepreneu rial Behaviour	Vegetables	12-06-09			
288.	Training Need Assessment of Assistant Agriculture Officers of Manipur	Ms. Sanatombi Kh.)	Training Need Assessment	Assistant Agriculture Officers	05-08-09			
289.	Impact of Front Line Demonstrations of Rice Production in Valley Areas of Manipur	Ms.L. Bekeshori Devi	Front Line Demonstrati ons	Rice	06-11-09			
290.	A Study on Adoption of Integrated Pest Management of Cabbage and Cauliflower in Imphal East District of Manipur	Ms.U. Supriya Devi	Adoption	Cabbage andCauliflo wer	13-11-09			

291.	A Study on Adoption of Pineapple Cultivation Practices by the Trival Farmers of Churachandpur District, Manipur	Mr.David J. Baite	Adoption	Pineapple	25-11-10
292.	A Study on the Decision- Making Behaviour of the Tribal Farm Women in Agriculture in West Garo Hills District, Meghalaya	Ms.Chivand i D. Momin	Decision- Making Behaviour	Tribal Farm Women in Agriculture	29-11-10
293.	A study on Communication Behaviour of Potato Growers in East Khasi Hills District, Meghalaya	Mr.Drulson Rangslang	Communica tion Behaviour	Potato	21-09-11
294.	A Study on Adoption of Reparsed Mustard in Zerotillase Cultivation Practices of Imphal West District, Manipur	Ms.A. Subhashini Devi	Adoption	Reparsed Mustard	12-08-11
295.	Study on Empowerment of Women of Self Help Groups (SHGs) of West Tripura District, Tripura	Ms.Usharan i Das	Empowerm ent of Women of Self Help Groups (SHGs)	Self Help Groups (SHGs)	16-01-12
296.	A Study on the Woman Entrepreneur of Ima Market in Imphal West District of Manipur	Ms.Laishra m Jayarani	Woman Entrepreneu r of Ima Market in Imphal	Ima Market	16-04-12
297.	A Study on Awareness of the Job Card Holder under NREGA in Imphal West District, Manipur.	Ms.Kh. Stina	Awareness of the Job Card Holder under NREGA	NREGA	26-09-12
298.	A Study on Adoption Behaviour of Rabi Vegetable Crops by the Farmers of Sawombung Block of Imphal East District, Manipur	Ms.Gunesh ori Maisnam	Adoption Behaviour	RabiVegeta ble	05-10-12
299.	A Study on the Adoption of Package of Practices of Hybrid Rice Cultivation by the Farmer of Keirao Bitra Block, Imphal East District Manipur	Mr.Th. Boboy Singh	Adoption	Rice	01-12-12
300.	A Study on the Technological Crop of Recommended Package or Practices of Hybrid Rice	Mr.Kangja m Santosh Singh	Technologic al Crop of Recommen	Rice	01-12-12

	Cultivation by the Farmers of Imphal East District, Manipur		ded Package		
301.	A Study on the Knowledge Level of Poultry Husbandary Practices by the Poultry Farmers of Imphal West District, Manipur	Mr.Mangle mba Paonam	Knowledge Level of Poultry Husbandry Practices	Poultry Farmers	21-11-12
302.	A Study on Sustainable Livelihood of Loktak Lake Islanders of Bishnupur District, Manipur	Ms.Sunanda Takhellamb am	Sustainable Livelihood of Loktak Lake	Loktak Lake	06-08-13
303.	A Study on Agricultural and Allied Enterprises in Imphal West District of Manipur	Ms.Ningtho ujam Margaret	Agricultural and Allied Enterprises	Enterprises	06-11-13
304.	A Study on Knowledge Assessment and Training Needs of Pesticides Retailers of Imphal East and Imphal West District of Manipur	Ms.Priyadar shini Elangbam	Knowledge Assessment and Training Needs	Pesticides Retailers	06-11-13
305.	A Study on Mass Media Exposure of the Students of North Eastern Hill University, Tura Cmpus, West Garo Hills, Meghalaya	Ms.Tasri R. Marak	Mass Media Exposure	Students	21-11-13
306.	A Study on Behavioural Changes of Adopted Farmers Under KVK Andro of Imphal East District, Manipur	Mr.Moirang them Universe Singh	Behavioural Changes of Adopted Farmers	KVK	27-01-14
307.	A Study on Entrepreneurial Behaviour of Potato Growers in Imphal East District, Manipur	Mr.Thokcho m Keniyo Singh	Entrepreneu rial Behaviour	Potato	10-03-14
308.	Extent of Farm Women's Participation in Rice Cultivation in Tamenglong District of Manipur	Ms.Machu m Remmei	Extent of Farm Women's	Rice	31-01-15
309.	A Micro Level Study on Adoption Behaviour of TPS (True Potato Seed) Growers in Khowai District of Tripura	Ms.Garani Debbarma	Adoption/E xtent	Potato	31-01-15
310.	A Study on Training Needs Assessment of Rice Growers of Horang Sabal Block, Imphal West District, Manipur	Ms.Khundra kpam Homeshwar i Devi	Training Needs Assessment	Rice	03-08-15

311.	A Study on Adoption Behaviour of System of Rice Intensification (SRI) Technology by the Farmers of Dhalai District, Tripura	Ms.Bichitra Debbarma	Adoption Behaviour of System of Rice Intensificati on (SRI) Technology	Rice	03-08-15
312.	Assessment of Training Programmes Through Perception of KVK (Andro) Trainees in Imphal East District of Manipur	Ms.Deepa Thangjam	Training Needs Assessment	KVK	13-07-16
313.	A Study on Effectiveness of Women Self Help Groups (Handloom) In Imphal West District, Manipur	Ms.Debikar ani Chungkham	Effectivenes s of Women Self Help Groups (Handloom)	Self Help Groups	13-07-16
314.	A Study on Information and Communication Technologies (ICTs) Exposure of the P.G. Students of Central Agricultural University Imphal, Manipur	Mr.Rilangb or Dkhar	Information and Communica tion Technologie s (ICTs) Exposure	P.G. Students	13-07-16
315.	A Study on Training Needs Assessment of Potato Growing, Tripura West District of Tripura	Mr.David Debbarma	Training Needs Assessment	Potato	24-01-17
316.	A Study on Training Needs Assessment of Sugar Cane Growers in Shriganda Block, Ahmadnagar District, Maharastra	Mr.Dangald e Kiran Sakharam	Training Needs Assessment	Sugar Cane	24-01-17
317.	A Study on Communication Behaviour Among the Rice Growers in Haorang Sabal Block, Imphal West District, Manipur	Mr.Ediga Ravi Goud	Communica tion Behaviour	Rice	06-07-17
318.	Extent of Opportunities in Rice Cultivation Practices of Lohit District of Arunachal Pradesh	Ms.Weijiml u Tayang	Adoption/E xtent	Rice	17-07-17
319.	A Study on Newspaper Reading Behaviour Among Imphal Urban Women in Manipur	Ms.Bandana Yumnam	Newspaper Reading Behaviour	Newspaper	11-08-17
320.	A Study on Entrepreneurial Behaviour of Tribal Farmers in Senapati District of Manipur	Ms.S. Kareini Kayina	Entrepreneu rial Behaviour	IFS	06-07-18

			of Tribal Farmers		
321.	A Study on Women's Participation in Silk Industry in Imphal West District of Manipur	Ms.W. Miranda	Women's Participatio n in Silk Industry	Silk	06-07-18
322.	A Study on the Role Performance of the Agricultural Extension Personnel (Assistant Technology Manager) in the Revitalized Extension System in Manipur	Ms.Rebani Akoijam	Revitalized Extension System	ATMA	09-08-18
323.	A Study on Utilization Pattern of Mobile Phone Among Registered Women Vendors in Imphal Ema Market of Manipur	Mr.Ch. Narendrajit Singh	Utilization Pattern of Mobile Phone	Women Vendors	09-08-18
324.	A Study on Technology Gap in Orange Production Technology in West Siang District of Arunachal Pradesh	Mr.Ngaken Yongam	Technology Gap	Orange Production	26-07-19
325.	A Study on Training Needs Assessment of Tomato Growers in West Jaintia Hills District of Meghalaya	Ms.Ebiang mitre Pale	Training Needs Assessment	Tomato	23-07-19
326.	A Study on Effect of Internet Utilization Among Undergraduate Students in College of Agriculture, Central Agricultural University, Imphal, Manipur	Mr.S. Harish Kumar	Effect of Internet Utilization	Undergradu ate Students	23-07-19
327.	A Study on Technological Gap in Turmeric Production Technology by the Farmers of West Jaintia Hills District, Meghalaya	gki	Technologic al Gap	Turmeric	26-07-19
328.	A Study on the Adoption Behaviour of Vegetable Crops Growing Farmers of Bishnupur District of Manipur	Mr.Godfrey Tore	Adoption Behaviour	Vegetable Crops	03-08-20
329.	A Study on the Training Needs Assessment of the Subject Matter Specialist (SMSs) of the Krishi Vigyan Kendra (Farm Science Centre) in Manipur, India	Mr.Mhike Augustine	Training Needs Assessment	Subject Matter Specialist (SMSs	03-08-20

	YEAR JAN 2020- MAY 2022					
Sl. No.	Title of the thesis	Name of the student	Major Subject	Year of completion	Outcome of the research work.(2-3 lines)	
330.	Impact of Integrated Farming System on the Socio-Economic Status of Farmers Under 'Mera Gaon Mera Gaurav (MGMG)' Programme in Bishnupur District of Manipur	Ms. Suparna Dey Adm. No. 2A -18(M) Regn.No – U-18-MN- 01-002-M- A-013	Extension Education	2021	Problems like lack of training program, changing market price, lack of knowledge about IFS, cost of HYV seeds, complexity of credit facilities and high wages of labor were the major prevalent issues faced by the MGMG farmers.	
331.	A Study on Training Needs Assessment of Kiwi Growers in Lower Subansiri District of Arunachal Pradesh	Ms. Hage Yadii Adm. No. 14A -18(M) Regd.No – U-18-MN- 01-002-M- A-024	Extension Education	2021	It was found that age, land holding, annual income, training exposure and innovation proneness were the important factors which had significant influence over the training needs of the respondents. Hence, the variables could be termed as good predictors that can be effectively used as a tool for the assessment of training needs of the kiwi growers in the future.	
332.	A Comparative Study on Adoption of Organic and Inorganic Pesticides by the Vegetable Growers on Bishnupur District of Manipur	Mr. Darelli Naveen Adm. No. 46A -18(M) Regd.No – I-18-MN- 01-002-M- A-006	Extension Education	2021	Education, farming experience, farm size, annual income, input availability and risk taking availability were found as important factors, which contributed to the overall extent of adoption of organic and inorganic pesticides among the vegetable growers in the Bishnupur district of Manipur. Use of these findings in State will be fruitful for livelihood	

					improvement of
					vegetable growers.
333.	A Study on Utilisation Pattern of Information and Communication Technology by the Farmers of Farmer First (Farm, Innovations, Resources, Science and Technology) Programme, Imphal East District of Manipur	M. Adm. No. 15A -18(M) Regd.No – U-18-MN-	Extension Education	2021	The majority of farmers had a low to medium level of ICT institutions usage. This leaves a broad scope to boost the farmers to use ICT by holding awareness campaigns and meetings.
334.	Attitude of Girl Students Studying in College of Agriculture, Central Agricultural University, Imphal Towards Higher Agricultural Education	Osman – Adm. No.	Extension Education	2021	The variables such as, academic performance, ICT exposure, and occupational aspirations had contributed significantly with the attitude of girl students towards higher agricultural education. It is therefore, recommended that more efforts should be made by the Government, agricultural universities and other organizations to develop these characters more in girl students.
335.	Study on Enterpreneurial Behaviour of Orange Cultivators in Chuchuyimlang Block, Mokokchung District, Nagaland	Wachapong Kichu Adm. No. 4A-19(M) Regd. No – U-19-MN- 01-002-M- A-001	Extension Education	2021	The fact that majority of the orange cultivators had medium entrepreneurial behaviour is a clear indication of the progressiveness of the farmers. Therefore, it calls for intensification of educational efforts and policy support to the farmers by the field extension workers of the development departments, NGOs and private organizations.
336.	Extent of Adoption of Rice	Ms. Irom	Extension	2021	The results of the

	Variety CAU-R1 in	Rati Chanu	Education		findings revealed that
	Sawombung Block of Imphal	Adm. No.			variables such as socio-
	East District, Manipur	49A-19(M)			economic status, social
	-	Regd. No –			participation, training
		U-15-MN-			received, innovation
		01-002-B-			proneness, extension
		A-007			contact, mass media
					exposure and marketing
					facilities were
					significantly correlated
					with adoption behaviour
					of CAU-R1 growers at
					0.01 level of
					significance. These
					findings can be utilized
					by state departments in
					their future planning.
337.	A Social Study of Adaptation			2021	Diseases and pests were
	Strategies to Climate Change	Meinam			the major problem in the
	Effect on Cardamom	Adm. No.			study area. Thus, urgent
	Cultivation in East Sikkim	` ′			need for research and
	District of Sikkim	Regd. No –			development
		U-19-MN-			interventions is required
		01-002-M-			for developing disease
		A-031			resistant planting
					materials.

	SOIL SCIENCE AND AGRICULTURAL CHEMISTRY M. Sc. (Agri)						
A. Nu	A. Nutrient Management						
Sl.	Title of thesis	Name of student	Major subject	Year of completion			
No.							
328.	Integrated Nutrient Management in Rainfed Rice	Zoliana Chhangte	SSAC	2002			
329.	Management of zinc fertilizer for rainfed rice (<i>Oryza sativa</i> L. var. CAU-R-1) ecosystem of Manipur	Maibam Chintu Singh	SSAC	2012			
330.	Nitrogen Transformation in Paddy Soil Fertilized with Organic Manures and Urea	Khundrakpam Manorama	SSAC	2016			
331.	Phosphorus Transformation in Paddy Soil Fertilized with Single Super Phosphate and Rock Phosphate	Sudip Sarkar	SSAC	2017			

332.	Transformation of Zinc in Soils under Submerged Condition and its Relation to Zinc Nutrition of Lowland Rice (<i>Oryza sativa</i>)	Konda Reddy	SSAC	2018
333.	Boron Transformation in Paddy Soil Fertilized with Boron and FYM	Animesh Sarkar	SSAC	2020
RAPE	SEED			
334.	Effect of nitrogen, sulphur and mulching on the growth, seed yield and oil content of rapeseed (<i>Brassicacampestris</i> var. Toria)	Lairenlakpam Somendro Singh	SSAC	2002
335.	Effect of Sulphur and Zinc Levels on Growth, Seed Yield and Oil Content of Rapeseed (Brassica campestris)	Naorem Chanu Gulleibi	SSAC	2016
TOMA	ATO			
336.	Effect of Vermicompost and Boron on Yield and Fruit Quality of Tomato (<i>Lycopersicon esculentum</i> cv. Pusa Ruby)	Athokpam Haribhushan	SSAC	2005
337.	Effect of Zinc and Boron on the Growth and Yield of Tomato (Solanum lycopersicum) in Acid Soils	D. Gopal	SSAC	2018
CITRI	IIS.			
338.	Development of Diagnostic Techniques of Khasi Mandarin Grown in Manipur	L. Devarishi Sharma	SSAC	2012
РОТА	TO			
339.	Effect of Integrated Nutrient Management on Soil Fertility and Productivity in Potato in Acid Soil	Dorjee Tsering	SSAC	2016
LEGU	JME			
340.	Phosphorus Transformation in Rock Phosphate Fertilized soil Amended with Organic manures and Lime	Tshering Palden Bhutia	SSAC	2017
341.	Comparative Efficiency of Zinc with and without organic manure in growth and effect of organic amendments in Zinc Nutrition of Chckpea (<i>Cicer arietinum</i>)	T. Vikashkumar	SSAC	2017
342.	Comparative Efficacy of Different	Vanlalmuanpuia	SSAC	2018

	Manures on Chickpea (Cicer	Fanai		
343.	arietinum L.) Nitrogen Transformation in Soil Amended with Humic Acid Derived from Organic Manures	Geeta Nongmeikapam	SSAC	2018
344.	Phosphorus Transformation in Rock Phosphate Fertilized Soil Applied with Phosphorus Solubilizing Bacteria and Farm Yard Manure	Akhil Dev Tamalam	SSAC	2020
345.	Boron Transformation in an Acid Soil Applied with Boron and Lime	Hiren Das	SSAC	2020
346.	Effect of Nitrogen and Molybdenum on Soil Properties and Yield of Pea (<i>Pisum sativum</i> L.)	Ch. Karuna Chanu	SSAC	2020
B. NI	JTRIENT STATUS IN SOIL			
347.	Study on different forms of potassium in acid soils of Manipur	R.K. Umakanta Singh	SSAC	2004
348.	Distribution of some micronutrients in relation to soil properties on citrus orchard of Tamenglong, Manipur	K. Vikramjeet	SSAC	2010
349.	Vertical distribution of some micronutrients in relation to soil properties of citrus orchard of Ukhrul, Manipur	Vashainao Somiphang Zimik	SSAC	2011
350.	Distribution of micronutrient in the soil of Imphal East and West District of Manipur	Kh. Surmani Singh	SSAC	2012
351.	Status and different forms of phosphorus in acid soils of Imphal East district, Manipur	Wangthem Herojit Meetei	SSAC	2013
352.	Status and different forms of phosphorus in acid soils of Imphal East district, Manipur	Linthoi Watham	SSAC	2013
353.	Distribution of Micronutrients in the Paddy Fields of Thoubal and Bishnupur Districts of Manipur	L. Punilkumar Singh	SSAC	2014
354.	Status and different forms of phosphorus in acid soils of Imphal East district, Manipur	Rabichandra Khangembam	SSAC	2015
355.	Micronutrient Status of Soils Under Different Landuse System in Manipur	Ningombam Riyabati	SSAC	2016
356.	Status and different forms of zinc in	Lalramdinpuia Ralte	SSAC	2017

	soils of Imphal West district, Manipur				
357.	Vertical distribution of micronutrients in the soils under Jhum land in Chandel district, Manipur	Hrangbung jurist Anal		SSAC	2018
358.	Micronutrients status in the soils of orange orchard (Citrus reticulate Blanco) of Tamenglong district, Manipur	Laikhuram Banarjee Singh		SSAC	2019
359.	Forms of Boron and their Relationship with Some Physico- Chemical Properties of Soil	Ann Maria	Joseph	SSAC	2019
360.	Status of zinc in the soils of Imphal East district, Manipur	Pawan Ku	mar	SSAC	2020
361.	Status and distribution of zinc in the soils of Thoubal district, Manipur	Lalitha Gollapudi		SSAC	2020
C. LI	MING				
362.	Characterization of Acid Soil and Lime Requirement of Bishnupur District, Manipur	Pebam Bidyananda Singh		SSAC	2014
D CF	RITICAL LIMIT OF NUTRIENT				
363.	Distribution of Secondary Macro Nutrients and Estimation of Critical Limits of Magnesium for Green Gram	V. Venkat	esh	SSAC	2018
364.	Standardization of Soil Test Methods and Establishment of Critical Limits of in Soils of Manipur	Laxmi Ningthoujam		SSAC	2019
E SC	OIL MOISTURE AND NUTRIENT				
365.	Nitrogen Transformation in Soil Amended with Organic Manures at Different Moisture Regimes	T. Sanahai	nbi Devi	SSAC	2014
		R JAN 202	0 -MAY 20	22	
366.	Phosphorus Transformation in Rock Phosphate Fertilized Soil Applied with Phosphorus Solubilizing Bacteria and Lime	Nakeerth a Venu Adm. No. 47A- 19(M	Soil Science & Agricult ural Chemistr y	2021	i. Application of rock phosphate in combination with PSB and lime is feasible to obtain higher yield of green gram in acid soils of Manipur. Combined application of PSB and lime enhanced organic P

					mineralization thereby increasing soil P availability,
367.	Boron Transformation in an Acid Soil Applied with Boron and FYM	Laishram Nikita Devi Adm. No. 05A- 19(M)	Soil Science & Agricult ural Chemistr y	2021	i. Application of boron and FYM significantly influenced different boron pools, plant boron uptake and yield of green gram (var. DGGS-4). ii. Application of boron at 2 kg ha ⁻¹ in combination with FYM at 5 t ha ⁻¹ exhibited superiority among all the other treatment combinations in maintaining and improving the retention level of accessible boron content and yield of green gram (var. DGGS-4) grown in an acid soil of Maibam Chingmang, Nambol, Bishnupur.
368.	Influence of Boron and Sulphur on Soil Properties and Yield of Broccoli (Brassica oleracea var. italica)	Rafiya Choudhu ry Adm. No. 51A- 19(M)	Soil Science & Agricult ural Chemistr y	2021	i. Combined application of 30 kg S ha ⁻¹ and 1 kg B ha ⁻¹ was found superior in terms of yield, yield parameters, nutrient content, net returns and B:C ratio (3.30). ii. Hence, it is advisable to the farming community that application of 30 kg S ha ⁻¹ + 1 kg B ha ⁻¹ was economically profitable for obtaining higher productivity and quality in broccoli besides maintaining sulphur and boron status in soil.
369.	Status and Different Forms of Phosphorus in Acid Soils of Kakching District, Manipur	Trishank u Kashyap Adm. No. 9A- 19(M)	Soil Science & Agricult ural Chemistr y	2021	i. The amount of inorganic P fractions in the soils of Kakching District, Manipur was in the order: Red P>Fe-P>Al-P>Occl-P>Ca-P>Sal-P. ii. Extracting power of the different extractants was in the order: Troug> Bray 2> Bray 1> Mehlich 3> Olsen (pH-8.5)> Mehlich 1. iii. Critical levels of P in soil and green gram were found to

			be 20 kg P ₂ O ₅ har respectively.	a ⁻¹ and 0.43%,
	7.	HORTICULTURE	•	
		Pomology		
370.	Bearing behaviour of Mango Cultivation "Moreh" (Mangiferaindica L.) under different nutritional levels	W. Prameshwar Singh	Pomology	1993
371.	Study on the Effect of Ethrel, Calcium carbide and Spacing on the Growth, Flower Induction and Yield of Pineapple (<i>Ananascomasus</i>)	Mannianching	Pomology	1994
372.	Effect of N P K and Mulching on Growth, Yield and Quality of Dwarf Mango(Mangiferaindica L.) var. Morch	M HepuniThangal	Pomology	1995
373.	Effect of Potasium and Sneker Size on Grogth, Yield and Quality of Pine-apple (<i>Ananascorosus</i> L Merr) Var Kew	M Bimola Devi	Pomology	1996
374.	Effect of Mulching and Mode of Fertilizer Application on Growth, Yield and Quality of Pine-apple (AnanascomosusL. Merr) cv Kew	N Nepolean Singh	Pomology	2000
375.	Effect of Nitrogen and Potassium on Growth, Yield and Quality of First Ratoon Pine-apple	SanasamSanjoy Singh	Pomology	2002
376.	Effect of Nitrogen and Potassium on Growth, Yield and Quality of First Ratoon Pine-apple (Annanascomosus L. Merr) var. Kew	S Sanjoy Singh	Pomology	2002
37	Effect of potassium nitrate and zinc sulphate on growth, yield and quality of dwarf mango (<i>Mangiferaindica L.</i>)varKhongnembi syn. Moreh	Catherine Chozah	Pomology	2004
378.	Effect of Seasons in the Preparation of Juive, Canning and Squash of Pine-apple (Ananas Comosus L. Merr) var. Kew in Manipur	KhPremlata Devi	Pomology	2004
379.	Effect of Organic Manures and Biofertilizers on Growth and Fruitset of Pine-apple (AuanascomosusL. Merr.) Var. Kew	HemantaNgangom	Pomology	2005
380.	Studies on the in Victroshoot-Tip	Robert Lalringsang	Pomology	2005

	Culture of Banana Var. MeeteiHei			
381.	Effect different training systems on growth, flowering and fruiting of passion fruit (Passifloraedulis Sims var. Edulis) under subtropical condition in Manipur	Brijesh Pandey	Pomology	2007
382.	Response of Different Size and Growth Regulation on Cuttings of Passion fruit Var. Purple (Passifloraedulis Var. Edulis Sims)	K Bemkaireima	Pomology	2007
383.	Effect of desuckering on the vegetative and reproductive growth of banana cv. Grand Naine	Lourembam Dhanabati	Pomology	2009
384.	Effect of Double and Single Row System of Planting in the Hill Slop of Imphal East District (Andro) on Growth and Yield of Pine-apple (AnanuscomsosusL. Merr) c.v. Kew	Mantosh Laishram	Pomology	2010
385.	Effect of Manuring on growth yield and quality of passion fruit (Passifloraedulis Sims var. Edulis)	Soubam Monita Devi	Pomology	2011
386.	Effect of growth regulators on rooting and growth of grape (Vitisvinifera L. var. Thompson Seedless)	Sony Laitonjam	Pomology	2012
387.	Effect of Organic Manures and Varieties on Growth and Yield of Banana	Ng Monisha Devi	Pomology	2012
388.	Effect of different levels of nitrogen on vegetative growth of guava (<i>Psidiumguajava</i> L.) during prebearing stage	L. Sani Khrasi	Pomology	2013
389.	In Vitro Propagation of Pine-apple {AnanascomosusL. Merr} from Suckers,Crowns and Slips var. Kew	Gloria Leisan	Pomology	2013
390.	Effect of Varying Levels of Ethrel and Calcium carbide on Flower Induction of Kew Pine-apple Under Polymulch Condition	Takhelchangbam Nongdambi Devi	Pomology	2013
391.	Effect of different levels of BAP on In vitro culture of pineapple (Ananascomosus (L) Merr) var. Kew	Premi Devi Mayengbam	Pomology	2014
392.	Effect of Variety and Bio-fertilizer on Growth and Yield of Pine-apple (<i>Ananascomosus</i> L. Merr)	Hijam Krishan	Pomology	2014
393.	Effect of grafting height and scion	Amrita Thokchom	Pomology	2015

	length on growth of Citrus reticulate var, Nagpur Mandarin				
394.	Effect of Varying Levels of Growth Regurator on Early Rooting of Pine- apple (<i>Ananascomosus</i> L. Merr) Var. Kew by Stem Cutting	Thokchom RebikaChanu		Pomology	2015
395.	Effect of Different Shoot Cuttings and Soil Media for Rapid Multiplication of Pine-apple (Ananascomosus L. Merr.) cv kew	Khamrai	ng Mathukmi	Pomology	2015
396.	Effect of Various Sources of Organic Nutrient on the Growth and Development of Grape (<i>Vitisvinifera</i> L.) Var. Thompson Seedless Under Open and rain Shelter Conditions	Thangja	Thangjam Nandarani		2015
397.	Effect of Varying Levels of Growth Regulators on Early Rooting of Pineapple (<i>Ananascomosus</i> L. Merr) var. Kew by Stem Cutting	Th Rebika Chanu		Pomology	2015
398.	Effect of different levels of ethylene on induction of flowering in ratoon pineapple (Ananascomosus Merrill.)cv. Kew	Leishangthem Hemabati Devi		Pomology	2016
399.	Effect of Micronutrients Application on Growth, Yield and Quality of Pineapple cv. Kew	Toijam Monica Devi		Pomology	2016
400.	Effect of growth regulator and different diameter of cuttings on rooting and growth of grapes (Vitisvinifera L.) cv. Thompson Seedles under polyhouse condition	Hannah Lalrohlui Betlu		Pomology	2017
401.	Effect of Foliar Application of Micronutrients on Growth, Yield and Quality of Mandarin Orange (Citrus reticulate Blanco.) cv. Tamenglong Mandarin	Duanaliu Kamei		Pomology	2017
402.	Effect of growth regulator on rooting of cutting of dragon fruit (Helocereusundatus)	Omekali		Pomology	2018
		Olericultur	e		
403.	Effect on Various Organic Mulching the Growth, Development, Yield Storage of Potato (Solanum VarKufriJyoti under Clay Soil Manipur	Quality and atuberosumL.)	A. Ajoykumar Singh	Olericulture	1993

404.	Study on the effect of boron and copper on growth development and yield of Okra (Abelmoschusesculentus L. Moench) var. PusaSawani	Ch. Narendra Singh	Olericulture	1993
405.	Efficiency of GA ₃ and foliar application of nitrogen on growth and yield of cabbage (<i>Brassica oleraceae</i> var. Capitata L) var. Golden Acre.	L. Nirmala Devi	Olericulture	1994
406.	Varietal evaluation of local chillies (Capsicum annum) of Manipur	M. Dinachandra Singh	Olericulture	1994
407.	Effect of spacing boron and ethanol on sex expression and yield of cucumber.	Leishangbam Jamini Devi	Olericulture	1994
408.	Effect of Nitrogen on Growth and Yield of Alocasia (Rox B) Schott Under Different Spacing	Kamei Khamjai Kabui	Olericulture	1995
409.	Effect of Spacing Planting Material and Yield of Chinese Chives (Allium tuberrosum) cv Ningthanesidabi	T Robindro Singh	Olericulture	1995
410.	Effect of Boron and Zinc on Growth and Yield of French Bean (<i>Phascolusvulgoris</i> L.)	Kumari Rajni	Olericulture	1996
411.	Effect of Different Levels of Nitrogen and Spacing on Growth and Yield of OKRA (Abelmoschusesculentus L. Moench) VarpusaSawan	Ch Jilla Singh	Olericulture	1996
412.	Effect of Nitrogen on Growth and Yield of Ginger (GingiberofficinanaleRose)c.v.s. Gorubathan and Bhaisey Under Clay Soil Conditions of Imphal	Pintso Wangyal	Olericulture	1997
413.	Effect of potassium and molybdenum on growth and yield of cauliflower (<i>Brassica oleraceae</i> var. botrytis L.) var. PSBK -1	Y. Jayalaxmi Devi	Olericulture	1998
414.	Influence of Spacing and Variety on Growth, Yield and Quality of Board Leaf Mustard (<i>Brassica junceaVarrugosaRoxbTsen and Lee</i>)	Ps Marium Anal	Olericulture	1999
415.	Dynamics of Yield Accumulation as Influenced by Transplanting, Seed Sizes and Condition of Sowing of Tubers on Growth, Yield and Storage of Potato (SolanumtuberosumL.)var. "kufri-jyoti"	Liagi Tajo	Olericulture	2000
416.	Effect of Nitrogen, Potassium and their mode of Application on Growth and Yield of Chinese Chives. (Allium tubersum Roller Ex sprengel)	P Bijaya Devi	Olericulture	2001
417.	Effect of Nitrogen, Phosphorus and Potassium on Groeth, Yield and Quality of Chilli (<i>Capsicum annuum</i> L.) <i>var.</i> MorokAshangbi	Solie Luiram	Olericulture	2001
418.	Effect of Different Mulching and Varieties on the Growth, Development and Yield of Ginger	Angom Sunita Devi	Olericulture	2001

	(ZingiberofficinaleRose) Under Clay Soil Condition of Imphal			
419.	Effect of Seed Size and Method of Sowing of Tuber on Growth and Yield of Potato var. "Kufrijyoti"	R K Rajendro Singh	Olericulture	2002
420.	Effect of Mode of Application and Level of Nitrogen on Growth, Development and Yield of Broad Leaf Mustard (<i>Brassica juncea var. rugosa</i> , RoxbTsen and Lee)	Pura Obing	Olericulture	2002
421.	Effect of different sources of plant nutrients on growth and yield of cabbage (<i>Brassica oleracea</i> var. <i>capitata</i> L)	Arpita Roy	Olericulture	2002
422.	Effect of different levels of nitrogen and phosphorus in combination with biofertilizer on growth, yield and its parameters of multiplier onion (<i>Allium cepa</i> L. var. <i>aggregatum</i> Don.)	Limi Ado	Olericulture	2003
423.	Effect of different levels of boron and zinc on growth, yield and yield parameters of cauliflower (<i>Brassica oleracea</i> var. <i>botrytis</i>)	Judith D	Olericulture	2005
424.	Effect of different levels of spacing and bulb size on growth and yield of multiplier onion (<i>Allium cepa</i> L. var. <i>aggregatum</i> Don.) <i>aggregatum</i>)	Lavid Anal	Olericulture	2005
425.	In Vitro Preservation and Regeneration of Protocorm like Bodies of Cymbidium Rivulux cooks Bridge through Modified Culture Medium	Pema Choten Bhutia	Olericulture	2007
426.	Morphological characterization, cataloguing and evaluation of sweet potato [<i>Ipomoea batatas</i> (L.) Lam]	Gin Buanglung Gangmei	Olericulture	2009
427.	Effect of different sources of plant nutrients on growth, yield and quality of sweet potato [<i>Ipomoea batatas</i> (L.) Lam] cv. SreeBhadra.	Yengkhom Rahul Kumar	Olericulture	2010
428.	Effect of spacing and planting time on growth and yield of common onion (<i>Allium cepa</i> L) cv. N-53 under Manipur condition	D. Deepak Mishra	Olericulture	2010
429.	Study on the growth, yield potential and tuber quality fourteen sweet potato [Ipomoea batatas (L.)Lam.] germplasms under Manipur condition	Kenny Thangjam	Olericulture	2011
430.	Standardization of agro-technique of cucumber under Manipur condition.	Mirnalini	Olericulture	2012
431.	Evaluation of short duration cassava(Manihot esculenta Crantz.) varieties under Manipur condition	Konthoujam James Singh	Olericulture	2014
432.	Identification of suitable Intercrops in Taro/Arvi (<i>Colocasia esculenta</i> Schott,) cv. Mukhi Pan under the Sloppy Foot Hills of Imphal East	Momoko Thokchom	Olericulture	2014
433.	Effect of intercropping Spice crops on Growth, Yield and Quality of Elephant Foot Yam	Ravi Kiran Thirumdasu	Olericulture	2014

	(Amorphophallus campanulatus Roxb. Blume) cv. Gajendra			
434.	Evaluation of Greater Yam (<i>Dioscorea alata</i> L.) germplasm on growth, yield and quality.	Loitongbam Sulochana Devi	Olericulture	2016
435.	Effect of planting time and spacing on growth and yield of King Chilli (<i>Capsicum chinense</i>) under polyhouse condition	Satya Prakash Barik	Olericulture	2016
436.	Effect of Introducing KnolKhol (<i>Brassica oleracea</i> var. <i>gongylodes</i> and Broad Bean (<i>Viciafaba</i> L.) as intercrops on growth and yield of cabbage (<i>Brassica oleracea</i> L. var. <i>capitata</i>)	Ashwini Ananda	Olericulture	2018
437.	Effect of organic source of nitrogen on growth and yield of local onion (Allium cepa L. var . aggregatum.Don)	Nishchita T.M	Olericulture	2019
438.	Effect of intercropping short duration vegetable crops on growth, yield and quality of cabbage (<i>Brassica oleracea</i> L. var. <i>capitata</i>) cv. Rareball	Justy. D. Varughese	Olericulture	2019
439.	Characterization and evaluation of Swamp taro [Colocasia esculenta var stoloniferum (L) Schott] germplasms under Manipur condition	Joyshree Laishram	Olericulture	2019
436.	Effect of nitrogen and phosphorus growth flowering and corm production of Gladiolus, American Hybrid Green Bay	Ningboi Haokip	Floriculture and Landscape Architecture	1998
437.	Effects of spacing and bulb size on growth, flowering and yield of tuberose (<i>Polianthes tuberosa L</i>) cv. single	Tagom Ronya	Floriculture and Landscape Architecture	2008
438.	Effect of biofertilizers and vermicompost on growth, flowering and yield of tuberose (<i>Polianthes tuberosa L</i>) cv. Single	L. Basil	Floriculture and Landscape Architecture	2009
439.	Effect of nitrogen on growth, flowering and yield of tuberose(<i>Polianthes tuberosa L</i>) cv. Single	Kh. Lily Devi	Floriculture and Landscape Architecture	2009
440.	Response of nitrogen and potassium on growth, flowering and yield of tuberose(<i>Polianthes tuberosa</i>)	Cleopatra Yaikhom	Floriculture and Landscape Architecture	2010
441.	Effect of time and depth of planting on growth, flowering and yield of tuberose (<i>Polianthes tuberosa</i>)	Rocky Thokchom	Floriculture and Landscape	2012

			Architecture	
442.	Response of different sources and levels of phosphorus on the growth, flowering and yield of tuberose (<i>Polianthes tuberosa L</i>) cv. Single	MangsatabamNe na	Floriculture and Landscape Architecture	2012
443.	Effect of foliar application of ZnSO ₄ and CuSO ₄ on growth, flowering and yield of tuberose (<i>Polianthes tuberosa L</i>) cv. Single	S. Renuka Devi	Floriculture and Landscape Architecture	2013
444.	Effect of nitrogen and phosphorus on growth flowering and yield of African Marigold (<i>Tagetes erecta L</i>) cv. Pusa Narangi Gainda	KosoChokhoni	Floriculture and Landscape Architecture	2015
445.	Effect of different levels and mode of application of potassium on growth flowering and yield of African Marigold (<i>Tagetes erecta L</i>) cv. Pusa Narangi Gainda	Lumlin Mary Lamare	Floriculture and Landscape Architecture	2015
446.	Effect of integrated nutrient management on growth, flowering and yield of tuberose (<i>Polianthes tuberosa L.</i>) cv. Prajwal	Usham Gautam	Floriculture and Landscape Architecture	2017
447.	Effect of foliar application of Zn, Cu and B on growth, flowering and yield of African Marigold (<i>Tagetes erecta</i> L.) Pusa Narangi Gainda	Devika Thangjam	Floriculture and Landscape Architecture	2017
448.	Response of Gibberellic Acid and Benzyladenine on Growth, Flowering and Yield of Tuberose (<i>Polianthes tuberosa</i> L.) cv. Prajwal.	Sukanta Biswas	Floriculture and Landscape Architecture	2018
449.	Efficacy of Foliar spray of IAA, GA ₃ and Daminozide on Growth, Flowering and Yield of Gladiolus (<i>Gladiolus grandiflorus</i> L.) cv. Oscar.	Rajkumari Sweety Devi	Floriculture and Landscape Architecture	2018
450.	Effect of Different Sources of Nitrogen on Growth, Flowering and Yield of African Marigold (<i>Tagetes erecta</i> L.) cv. Summer Sugat.	Meikam Ichancha	Floriculture and Landscape Architecture	2018
451.	Effect on Different Levels of Potassium on Growth, Flowering and Yield of Gladiolus (Gladiolus grandiflorus L.) cv. Oasis in Acidic Soil Condition of Manipur"	Lourembam Tinibala Devi	Floriculture and Landscape Architecture	2019

YEAR JAN 2020 – MAY 2022								
	Sl.	Title of the thesis	Name of	f the	Major	Year	of	Outcome of the research work.(2-3 lines)

No.		student	Subject	completion	
452.	Effect of IBA Concentrations and Length of Hardwood Cutting on Rooting and Growth Performance of Pomegranate cv. Bedana "	Salam Dayaprakash Singh	Fruit Science	2021	Based upon the result obtained, it can be concluded that, use of IBA concentration I ₃ (3000ppm), length of hardwood cutting L ₃ (25cm) and their interaction effect resulted with best rooting and shoot pararmeters. Therefore, it can be suggested that use of 3000ppm IBA concentration with 25cm length of hardwood cuttings gave the better option for the propagation of Pomegranate cutting as per the present investigation.
453.	"Influence of Mulching Material on Growth, Yield and Quality of Strawberry Under Polyhouse Conditon"	Haobam Neljosh Meetei	Fruit Science	2021	With regard to mulching applied, highest plant height, crown spread, number of leaves per plant, leaf area, number of runner per plant, fresh weight of plant, dry weight of plant, single fruit weight, diameter of fruit, number of fruit per plant, yield, specific gravity of fruit juice percentage were observed in Straw mulch compared to rest treatment polymulch straw dust. For Straw mulch (M2)with Chandler(V2) i.e. M2V2 observed maximum in plant height, number of leaves per plant, crown spread, leaf area of plant, number of runners per plant, fresh weight, dry weight, number of fruits per plant, single fruit weight, diameter of fruit, yield, juice, specific gravity.
454.	Effect of Different Levels of Nitrogen and Potassium on Growth, Yield and Quality of Sweet Potato [<i>Ipomoea</i> batatas (L.) Lam] cv. NFSP-1	Rudolph Brandonne Nongkhlaw	Vegetable Science	2021	Highest level of N i.e. 65kg/ha of N (designated as N ₃) & highest level of K i.e. 65kg/ha of K (designated as K ₃) gave highest values for growth and yield characters and also quality of tubers at harvest.
455.	Effect of Organic Sources of Nitrogen on Growth, Yield and Quality of King Chilli (Capsicum chinense Jacq.) Under Poly house Condition.	Humtu Rangai	Vegetable Science	2021	Treatment with RDF (120:50:50kg NPK/ha) resulted maximum growth, yield and net return & it was found statistically at par with 100% recommended dose of N through Vermicompost. Thus, it could be recommended as vermicompost was found effective alternatives to inorganic source of nutrients.
456.	Effect of Planting Time and Spacing on Growth and Yield of Multiplier Onion (Allium cepa L. var. aggregatum	Poovamma B.C.	Vegetable Science	2021	Treatment combination of closer spacing 10cmx10cm and early planting date 10 th November produces plants with better plant growth rate, better quality of the bulblets, higher and economically profitable yield.

	Don.) cv. Meitei Tilhou under Manipur Condition.				
457.		Ram Preet Singh	Fruit Science	2021	Fruit treated with cling film (T ₇) recorded significantly lowest physiologically loss in weight, specific gravity minimum TSS, TSS: acid ratio, reducing sugar and total sugar content with maximum acidity content and marketability with a highest sensory quality during 12-15 days of storage, whereas the fruit coated with paraffin wax (T ₆) as recorded maximum retention of marketability with minimum spoilage and maximum shelf life upto 15 th days of stored under ambient condition.
458.	Studies on Quality of Pickle Prepared from Different Growth Stages of Local Mango (Mangifera indica L.) cv. Heinou Khongnembi Fruit of Manipur	Deepak Singh	Fruit Science	2021	Treatment T_8 (160g fruit weight) was found to be good with respect to TSS, total sugars and lowest moisture content. Treatment T_1 (20g fruit weight) performed well with respect to titratable acidity and minimum pH. T_8 received the highest score for color, flavour, texture and overall acceptability.
459.	Effect of Pulsing Treatment and Vase Solution on Post- Harvest Performance of Gladiolus (Gladiolus grandiflorus Andrews) cv. Advance Red	Trishangni Saikia	Floriculture	2021	Pulsing treatment with high concentration of AgNO3 300ppm and vase solution containing Sucrose 5% + Citric acid 200ppm show better result in post-harvest performance of cut gladiolus spikes.
460.	Study on Different Packaging Materials for Shelf Life Extension of Lime (Citrus aurantifolia)	Pundru Manoj Reddy	Fruit Science	2022	Vacuum packaging was found to the best treatments for extending shelf life of lime upto 36-38 days maintaining a low PLW, good sensory score, minimum spoilage and other physic-chemical characters at the same time.
461.	Effect of Post Harvest Treatment on Shelf Life of King Chilli (Capsicum chinense Jacq.)	Priyadharshini T.	Vegetable Science	2022	King chilli washed with 100mg/l of NaOCl + Packed in LDPE bags was the best treatment for extending shelf life of King chilli upto 28 days maintaining a low PLW, good sensory score, minimum spoilage and physic-chemical characters at the same time.
462.	Effect of Nitrogen and Spacing on Growth and Yield	Konsam Ibetombi Chanu	Vegetable Science	2022	Treatment combination of maximum nitrogen dose of 150 kg N/ha and closer spacing of 10 cm × 10 cm produces plants

of Common (Allium cepa Prema 178 Manipur Con	L.) cv. Under				with better growth rate and higher and economically profitable yield.
		Jinamoni Lahkar	Vegetable Science	2022	The highest fruit yield per plot (13.89 kg) and per hectare (21.44 t) was recorded by T ₉ . The best treatment can be concluded only with the help of economics of the production. Gross return (Rs 643096), net return (Rs 482868) and benefit-cost ratio (3.014:1) were maximum in treatment combination T ₉ (60×30 cm and 150kg/ha). This implies that the interaction between closer spacing of 60×30 cm and 150 kg/ha nitrogen is the best treatment combination for profitable okra cultivation.

8. DEPARTMENT OF ENTOMOLOGY

Sl	Title of theses	Name of	Major	Year
No.		Student	Subject	
464.	"Microbial Control of Cabbage Butterflies Under	Maryir Basar	Entomology	2019
	Cabbage Crop Agro- Ecosystem".	45A-16(M)		
465.	"Studies on the Economic Threshold and	Thokchom	Entomology	2002
	Management of Mustard Aphid, Lipaphis erysimi	Robindro		
	(Kalt.) Infesting Rapeseed – Mustard"	Singh,		
		13A-99(M)		
466.	"Studies on the Seasonal Incidence and Management	Salam Bembem	Entomology	2003
	of Planthoppers, Nilaparvata Iugens (Stal.)	Devi,		
	and Sogatella furcifera (Horv.) Infesting Pre-Kharif	15A-99(M)		
	Rice Crop in Manipur"			
467.	"Bio-Efficacy of Certain Bio-Rational Insecticides	Km. Mutum	Entomology	2003
	Alone and in Combination with Synthetic Organic	Bimola Devi,		
	Insecticides Against the Gram POD Borer,	6A-2000(M)		
	Helicoverpa armigera (Hubn.) on Pea"			
468.	"Studies on the Effect of Plant Nutrients on the	Debabrata Das,	Entomology	2004
	Incidence of Rice Gall Ridge, orscolia oryzae	1A-2001(M)		
	Wood-Mason and its insecticidal Management under			
	Imphal agro-ecological situation"			
469.	"Effect of Graded Doses of Fertilizers on the	Khaidem	Entomology	2004
	Incidence of Diamond Back Moth, Plutella	Maipak Singh,		
	xylostella Linn. and Cabbage Butterfly, Pieris	9A-2000(M)		
	brassicae Linn. And their Control with safer			
	Insecticides"			
470.	"Studies on the Ecology and Eco-Friendly	Mrs. H.	Entomology	2005
	Insecticidal Management of Diamond Back Moth	Vanlaldiki,		

	(Plutella xylostella Linn.) on Cabbage under Agro- Climatic Conditions of Imphal, Manipur"	9A-03(M)		
471.	"Studies on the Seasonal Abundance and Eco- Friendly Management of Shoot and Fruit Borer, Leucinodes orbonalis Guenee Infesting Brinjal Crop in Manipur"	Athokpam Sanatomba, 1A-03(M)	Entomology	2005
472.	"Impact of Intercropping and Cow-Urine Indigenous Plant Extracts on the Incidence of Major Insect pests of Cabbage under Imphal Agro-Climatic Situations"	Nongmaithem Johnson Singh, 1A-04(M)	Entomology	2007
473.	"Management of Fruit Borer, <i>Helicoverpa Armigera</i> (Hubner) in Tomato with Reference to Bio-Rational Insecticides and Varietal Screening"	Ningthoujam Ajitkumar Singh, 16A-05(M)	Entomology	2007
474.	"Management of Mustard Aphid <i>Lipaphis erysimi</i> (Kaltenbach) in Rapeseed-Mustard with Reference to Botanicals and Varietal Resistance"	N. Madhu Sudhan, 15A-05(M)	Entomology	2007
475.	"Eco-Friendly Management of Black Aphid, <i>Aphis Craccivora</i> Koch in Broad Bean Crop under Agro-Climatic Condition of Manipur"	Km. Soibam Juliana, 17A-05(M)	Entomology	2007
476.	"Impact of insecticisal schedule in controlling <i>Scirpophaga incertulas</i> Walker and <i>Cnaphalocrocis medinalis</i> Guenee under Rice Crop-ecosystem of Manipur"	Jenita Thokchom, 9A-06(M)	Entomology	2008
477.	"Ecofriendly management of tomato fruit borer, Helicoverpa armigera (Hubner)"	Millo Tara, 14A-06(M)	Entomology	2008
478.	"Growth and development of Diamondback Moth <i>Plutella xylostella</i> Linn. (Plutellidae:Lepidoptera) as influenced by different temperature and host plant"	Y. Kenedy Singh, 9A-07(M)	Entomology	2010
479.	"Varietal screening and management of major insect pests of rice"	Walseng D. Sangma, 19A-07(M)	Entomology	2010
480.	"Studies on biology and management of <i>Sitophilus</i> oryzae (Linnaeus) and <i>Tribolium castaneum</i> (Herbst) under laboratory condition"	Kamei Kushinglung, 10A-07(M)	Entomology	2010
481.	"Evaluation of extracts of some Filicinophytes against Diamondback Moth"	Lunglu Marangmei Kabuini, 23A-08(M)	Entomology	2010
482.	"Studies on the eco-friendly insecticidal management of major insect pests of cabbage under agro-climatic conditions of Imphal, Manipur"	Gajendra Pal Singh Yadav, 7A-08(M)	Entomology	2011
483.	"Effect of certain varieties and new molecules on the incidence of major insect pests under rice-crop-ecosystem of Manipur valley"	H. Ramananda Singh, 25A-08(M)	Entomology	2011
484.	"Studies on biology and eco-friendly management of Angoumois grain moth, <i>Sitotroga cerealella</i>	S. Papak Bindu, 4A-09(M)	Entomology	2011

	(Olivier)"			
485.	"Laboratory studies on biology and comparative prey consumption of <i>Aphidophagous coccinanellids</i> and <i>Chrysopids</i> on aphids infesting cole crops"	Soibam Jenita, 11A-09(M)	Entomology	2012
486.	"Effect of some constant temperatures on the growth and development of Cabbage aphids; <i>Brevicoryne brassicae</i> Linnaeus (Homoptera:Aphididae)"	Laishram Chitra Chanu, 12A-09(M)	Entomology	2012
487.	"Effect of some rice varieties of Manipur on the growth and development of rice leaf folder, <i>Cnaphalocrocis medinalis</i> Guenee (Lepidoptera:Pyralidae)"	Rustam Ngangom, 27A-10(M)	Entomology	2012
488.	"Growth and development of cabbage aphid, Brevicoryne brassicae Linnaeus (Homoptera:Aphididae) on some cruciferous host plants"	Chungkham Niranjan, 28A-10(M)	Entomology	2012
489.	"Influence of trap crops on the incidence of major insects pests of <i>Kharif</i> rice"	Supriya Wahengbam, 36A-10(M)	Entomology	2013
490.	"Studies on the bio-rational management of major lepidopterous pests in cabbage crops"	Arun Debbarma, 40A-10(M)	Entomology	2013
491.	"Laboratory evaluation of Neem and Patchouli Oil against Cabbage Aphid, <i>Brevicoryne brassicae</i> L. (Homoptera: Aphididae)".	Suranjana Pal, 2A-11(M)	Entomology	2013
492.	"Effect of some microbial formulations on Dimondback Moth, <i>Plutella xylostella</i> L. (Lepidoptera:Plutellidae)".	Teresa Konsam, 3A-11(M)	Entomology	2013
493.	"Effect of Planting Dates and Phyto-Products on the Incidence of Primary Lepidopterous Pests in Cabbage under Manipur Valley Situation".	Deepjyoti Koch, 38A-11(M)	Entomology	2013
494.	"Management of Major Insect Pests of Cabbage Using Aqueous Indigenous Plant Extracts Under Manipur Valley Agro-Ecological Situations"	Pukhrambam Sanatombi 25A-11 (M)		2013
495.	"Studies on Biology of <i>Diaeretiella rapae</i> (Mc Intosh) (Hymenoptera:Aphidiidae) on Cabbage Aphid, <i>Brevicoryne brassicae</i> Linnaeus (Homoptera:Aphididae)".	Miss Roshna Gazmer, 12A-12(M)	Ento.	2014
496.	"Seasonal Abundance and Management of Aphis craccivora under Agro-Climatic Condition of Manipur Valley"	Ronibala Soibam, 18A-12(M)	Entomology	2014
497.	"Bioefficacy of Botanicals against Mustard Aphid, Lipaphis erysimi (Kaltenbach) and their Effect on Bee and Predator Population"	Nameirakpam Sunita Devi, 17A-12(M)	Entomology	2014
498.	"Studies on Biology of Galerucella Placida Baly Infesting Polygonum hydropiper Linn."	Rajkumari Indranisana, 11A-12(M)	Entomology	2014

499.	"Studies on Growth Development and Host Specificity Test of <i>Galerucella plalcida</i> Baly on some Polygonaceous Plant"	Dipankar Dey, 1A-13(M)	Entomology	2015
500.	"Effect of Gamma Radiation on the Growth and Development of Cabbage Aphid, <i>Brevicoryne</i> brassicae Linnaesus (Homoptera: Aphididae)"	Mangal Deep Singh, 3A-13(M)	Entomology	2015
501.	"Management of Trips and Leafminer using eco- friendly insecticide in Onion-crop-ecosystem of Manipur Valley"	Miss Sunanda Devi Tongbram, 31A-13(M)	Entomology	2015
502.	"Laboratory efficacy of certain indigenous plant powders and edible oils against pulse beetle, <i>Callosobruchus chinensis</i> Linnaeus infesting legume grains"	Miss Khundrakpam Julia, 11A-13(M)	Entomology	2015
503.	"Studies on Bioefficacy of New Molecular Insecticides Against Major Insect Pests of Kharift Rice Under Manipur Valley Agro-Climatic Conditions"	Km Athokpam Rajshree Devi 9A-12 (M)	Entomology	2015
504.	"Effect of Cow Urine Decotious of Batanicals Against Cabbage Aphid, Brenicoryne brarricase Linnaeus, (Homoptera: Aphididae)"	Konsam Linda Devi 21A-13 (M)	Entomology	2015
505.	"Biology and Eco-Friendly Management of Diamond Back Moth (<i>Plutella xylostella</i> Linn.) on Cabbage under Manipur Valley Agro-Climatic Conditions".	Vignesh M. 41A-14(M)	Entomology	2016
506.	"Laboratory Evaluation of Some Plant Oils Against <i>Pieris brassicae</i> Linn. (Pieridae:Lepidoptera)".	Madhumita Bhowmik 18A-14(M)	Entomology	2016
507.	"Consumption and Utilization of Food by Galerucella placida Baly on Some Polygonaceous Plant".	Rakesh Debbarma 27A-14(M)	Entomology	2016
508.	Molecular Insecticides for the Management of the Major Insects Pests of <i>Kharif</i> Rice-Crop-Ecosystem".	Mukta Das 19A-14(M)	Entomology	2017
509.	"Evaluation of Extracts of Some Fern Plants Against Diamondback Moth, <i>Plutella xylostella</i> L. (Lepidoptera: Plutellidae)".	Jyotirmoyee Murasing 17A-14(M)	Entomology	2017
510.	"Effect of Some Plants Oils Against Major Insect Pests of Soybean { Glycine max (L.) Merrill}".	Thangjam Leonard Singh 12A-14(M)	Entomology	2017
511.	"Bio-efficacy of Certain Eco-friendly Insecticides Against Yellow Stem Borer and Rice Leaf Folder under <i>Kharif</i> Rice-Crop-Ecosystem of Manipur Valley".	Mr. I. Yimjenjang Longkumer 8A-15(M)	Entomology	2017
512.	"Effect of Maleic Hydrazide and Gibberellic Acid on	Chethankumar	Entomology	2017

		3.7	1	
	the Biology of Melon Fly, Bactrocera Cucurbitae,	N 74 15 0 0		
710	Coquilett (Diptera:Tephritidae)".	7A-15(M)		2015
513.	23	Lapynbiang	Entomology	2017
	operculella (Zeller)(Lepidoptera:Gelechiidae) on	Khongrymmai		
711	Some Potato Varieties and its Management".	28A-15(M)	-	2015
514.	<u>.</u> ,	Yona Pradhan	Entomology	2017
	cucurbitae Coquillett (Diptera:Tephritidae) on	9A-15(M)		
	Some Cucurbitaceous Crops".		_	
515.	"Influence of Dietary Constituents on Development	Somala Karthik	Entomology	2018
	of Reproductive Organs and someLife History	9A-16(M)		
	Parameters of Melon fly, Bactrocera cucurbitae			
	Coquillet(Diptera:Tephritidae)".			
516.	,	Heisnam	Entomology	2018
	brassicae Linnaeus in Cabbage using	Bideshwori		
	IndigenousPlant Extracts under Manipur Valley	Devi		
	Situation".	24A-16(M)		
-		D 1 777		6010
517.	"Screening of Indigenous Rice Genotypes of	Balaga Mohan	Entomology	2018
	Manipur for their Resistance Reactionagainst Major	Ganesh		
	Insect Pests of Rice"	10A-16(M)		
710	"O' 1' ' ' O ' CD' '	C1 : .:	T . 1	2010
518.	"Studies on the Reproductive Organs of Diapausing	Christina	Entomology	2018
	and Non-Diapausing Leaf Beetle, Galerucella	Borang		
710	placida Baly (Coleoptera:Chrysomelidae)".	35A-16(M)	D . 1	2010
519.		Sushmita	Entomology	2018
	Callosobruchus maculatus Fabricius	Thokchom		
520	(Coleoptera:Bruchidae)".	17A-16(M)	E-41	2010
520.	•	Sukanya	Entomology	2018
	Pulp Weevil, Sternochetus frigidus Fabricius	Sougaijam		
	(Coleoptera: Curculionidae) and Fruit Fly,	22A-15(M)		
	Bactrocera dorsalis Hendel (Diptera: Tephritidae)			
521	Infesting Mango" "Effect of Planting Dates and Newer Insecticides on	Pollowy Morroom	Entomology	2019
521.	the Incidence of Major Insect-Pests Under Kharif	Bellary Naveen Kumar	Entomology	2019
	Rice-Crop-Eco-system of Manipur Valley".	17A-17(M)		
522.	"Influence of Gibberellic Acid and Maleic	Akshay Mishra	Entomology	2019
322.	Hydrazide on Some Biological Parameters of Melon	29A-17(M)	Entomology	2019
	fly <i>Bactrocera cucurbitae</i> Coquillett (Diptera:	43FA-1/(IVI)		
	Tephritidae)".			
523.	•	Karthik R.	Entomology	2019
J2J.	of Pulse Beetle,	3A-17(M)	Littomology	2017
	Callosobruchusmaculatus(F.)(Coleoptera:Bruchidae)	JA-1/(IVI)		
	on Different Stored Pulses".			
524.	"Study on the Biology of Papaya Mealybug,	Shobha	Entomology	2019
327.	Paracoccus marginatus Williams and its	Laishram	Lintolliology	2017
	Management in Brinjal Using Biopesticides under	11A-17(M)		
	management in Drinjar Using Diopesticides under	1173-17(141)		

	Manipur Conditions".			
525.	"Study on the Arthropod pest Complex of King	Mayanglambam	Entomology	2019
	Chilli (Capsicum chinense Jacquin) and Their Eco-	Somorjit Singh		
	friendly Management in Manipur."	28A-17(M)		

	YEAR JAN 2020-MAY 2022					
Sl.No.	Title of the Thesis	Name of the Student	Major Subject	Year of completion	Outcome of the research work (2-3 lines)	
526.	Study on the effect of somemicrobial insecticides on larval growth & Development of diamond back moth (<i>Plutella xylostella</i> Linn.)	Subhadip Sen; Adm.No. 29A- 18M)	Entomolog	2021	Fungal entomopathogen Beauveria bassiana @4g/l and 5g/l was the most effective microbial insecticide against Diamond Back Moth. High mortality of larvae of 62.50% after 120 hours of treatment and least percent pupation of 27.50% after 144 hours of treatment was observed with treatment B. bassiana @5g/l. Bacterial formulation, B. thuringiensis was found to be inferior as compared to entomopathogenic fungi tested in controlling DBM.	
527.	Study on the insect pest complex of leafy mustard vegetables in the valley of Manipur	D. Rajeshw ari; Adm. No. 50A- 18(M)	Entomolog y	2021	During the experimentation, eleveninsect pests, two parasitoids and four species predatory insects were recorded	
528.	Study on biology and host preference of existing lac insect species of Manipur	Ksh. Jabasku mar Singh	Entomolog	2021	Identified a new specieslac insect i.e. <i>Kerriamanipurengiensis</i> . From the studiy ofbiology of this new species on the most preferred host (<i>Cajanuscajan</i>) it was observed that the mean sex ratio ranged from 20.28, 20-30 and 22-31 per centper sq.cm, respectivelyon upper, middle and lower portion of <i>C. cajan</i> . The mean life period of female lacinsect varied from 120- 135, 121-135 and 120 – 136 days, respectively on upper, middle and lower portion of <i>C.cajan</i> .	

529.	Management of Pulse Beetle, Callosobruchus chinensis Linnaeus through Indigenous Plant Powders and Oils on Green gram under Stored Conditions	Loganathan R; Adm. No. 25A- 19(M)	Entomolog y	2021	From the present research it concluded that among the plant powders, <i>Acorus calamus</i> powder treatedseeds had high adultmortality, less seeddamage and seed weight loss, and minimum adult emergence, whereas incase of the oils used in the experiment castoroil showed most effective against Pulse Beetle, <i>Callosobruchuschinensis</i> Linnaeus which exhibited noeffect on germination percentage of green gram seeds
530.	Studies on Biology and Eco-friendly Management of Rust Red Flour Beetle, Tribolium castaneum (Herbst) under Stored Conditions	Gulappa Chandra Sekar; Adm. No. 26A- 19(M)	Entomolog y	2021	Outcome of theresearch, either Neem, Eucalyptus, Tulsi, Cow dung ash and Coal ash which are easily biodegradable can be exploited their insecticidal properties and utilized as the grainprotectants from theattack of Rust RedFlour Beetle, <i>Tribolium</i> castaneum (Herbst) Under StoredConditions
531.	Study on Evaluation of Plant Powders and Oils as Seed Protectants against Angoumois Grain Moth, Sitotroga cerealella(Olivier)	Nisanam Nagaraju ; Adm. No. 27A- 19(M)	Entomology	2022	Paddy seeds susceptible to <i>S. cerealella</i> may bestored for seed purpose for next season crop by treating with powder of black pepper @ 10g/kg seed or sweet flag rhizome powder @ 10g/kg seed which offerbetter protection uptoone and half month of storage with no effect on germination. As traces of plant powderon seed coat may leave unwanted odour and taste to the milled grains, seeds meant for human consumptioncould be best stored with citronella oil @10ml/ha
532.	Study on biology and management of Rice weevil, <i>Sitophilus oryzae</i> Linn. using edibleoils and plant powders on Stored Rice Grains.	Punam Gurung; Adm. No. 30A- 19(M)	Entomology	2022	Among the edible oilsneem oil and plant powders <i>Melia azedarach</i> powder exhibited besttreatments to suppress the population of rice weevil under storage condition.

533.	Eco-friendly Management of Plutella xylostella (Linnaeus) with Reference to Bionsecticides and Planting Datesunder Cabbage – Crop – Ecosystem of Manipur Valley	Saravana n S;Adm. No. 9A- 20(M)	Entomology	Thesis Seminar completedon 30th May, 2022	It was concluded that 25 th November planting and need-basedapplication of GreenLipel (<i>Bacillusthuringiensis</i> var. <i>Kurstak</i> i basedformulation) @2000 ml/ha may be advisedfor successfulmanagement of <i>P. xylostellla</i> withoutgiving adverse effect onnon-targeted insect
534.	Study on Biology and Eco-friendly Management ofRice Weevil, Sitophilus oryzae (Linnaeus) onStored Rice Grains under Laboratory Condition	Gokulnath R; Adm. No. 40A-20 (M)	Entomolog y	Seminar	Based on overall performance of plantoils in controlling <i>S. oryzae</i> Neem oil showed mosteffective treatment.

	Ph. D. AGRONOMY							
S.no	Title of thesis	Name of student	Major subject	Year of completion				
1	Comparative performance of rice	Khwairakpam	Nutrient	2020				
	establishment methods under different	Lenin Singh	management					
	nitrogen management practices in rice-rice							
	cropping sytem							
2.	Effect of crop establishment methods and	Yumam	Nutrient	2019				
	organic manure on the performance of	sanatombi Devi	management					
black aromatic rice-pea cropping system								
3.	Studies of Integrated Weed	Jamkhogin	Weed	2013				
	Management in Lentil (Lens culinaris	Lhungdim	management					
	medekus)							

	Ph.D. GENETICS AND PLANT BREEDING							
CATE	CATEGORY (CROP): MAIZE							
Sl.	Title of thesis	Name of the Student	Major Subject	Year of				
No.				completion				
4.	"Collection, Characterization of Maize	Chuwang Hijam	GPB	2018				
	Germplasm of Manipur and identification	1-A-12 (Ph.D.)	(Marker					
	of CrtRB1 and LycE Genes for marker		Assisted					
	assisted introgression"		Breeding)					
5.	"Identification of β -carotene rich maize	Yaikhom Vivekananda	GPB	2019				
	(Zea mays L.) lines and introgression of	1-A-13 (Ph.D.)	(Marker					
	this trait in popcorn using molecular		Assisted					
	markers"		Breeding)					
	Total=2			_				

Ph.D. Plant Pathology						
Sl. No.	Title of Thesis (Ph.D.)	Name of the Student	Major subject	Year of Completion		
Nan	ne of Category (Crop)- Rice		•			
6.	Survival, Pathologenic Variability and Management of <i>Sphingomonas Oryzae Sp. Nov</i> , Causing \Bacterial \Blight of Rice in Manipur	R.K. Imotomba Singh	Plant Pathology (Variability- Management)	2002		
7.	Studies of Fungi With Rice Collar Rot in Manipur	L. Nogdren Khomba Singh	Plant Pathology (Management)	2002		
8.	Studies of Rice Gain Discolaration Caused by Field Fungi	L. Kheroda Devi	Plant Pathology (Management)	2002		
Nan	ne of Category (Crop)- Citrus					
9.	Genetic Diversity of <i>Candidatus</i> Liberibacter asiaticus(Clas) Causing Citrus Huaglongbing (HLB) Disease in Manipur and Development of Efficient Diagnostics for Onsite Detection.	Y.Herojit Singh	Plant Pathology (Detection)	2002		
Nam	ne of Category (Crop)- Pea					
10.	Characterization of <i>Fusarium</i> Wilt of Pea and its Management.	W. Tampakleima Chanu	Plant Pathology (Management)	2002		

Ph.D.	Soil Science & Agricultural Chemistry			
A. NU	TRIENT MANAGEMENT IN PADDY/MUS	STARD		
11.	Distribution and Transformation of Zinc in Soil and its Critical Limit in Rice Growing	Nivedita Oinam	SSAC	2018
12.	Acidic Soils of Manipur Integrated Nutrient Management in Rice- Mustard Cropping Sequence	W. Herojit Meetei	SSAC	2019
13.	Integrated nitrogen management of rice and nitrogen status in paddy fields of Imphal west district, Manipur	Takhellambam sanahanbi Devi	SSAC	2020
B. SO	IL ACIDITY			
14.	Characterization of Soil Acidity in Soils of Manipur	L. Devarishi Sharma	SSAC	2018
15.	Nature of Surface and Sub-surface Soil Acidity in Relation to Iron and Aluminium Under Different Land Use System of Manipur	Linthoi Watham	SSAC	2019

COLLEGE OF POST GRADUATE STUDIES IN AGRICULTURAL SCIENCES, BARAPANI, MEGHALAYA

M.Sc Theses

	NATURAL RESOURCE MANAGEMENT (NRM)							
S.	Title of the thesis	Name of	Major	Year of	Outcome (2-3 lines)			
No		the .	subject	completion				
		student		n				
	1. Rice							
	Discipline: Agronomy Classification/category: Agrotechniques							
1.	Evaluation of rice cultivars under various planting geometry in mid altitude lowland condition of Meghalaya	Mr. K. Lenin Singh	Agronom y	2013	 The hybrid cultivar Arize 6444 gave significantly higher yield over the recommended inbred Shahsarang1 and local cultivar Mynri at all the planting geometries. For getting maximum net return, Arize 6444 should be transplanted at 20 cm x 20 cm planting geometry. 			
2.	Agronomic evaluation of rice cultivars under delay transplanting in the mid hills of Meghalaya	L.Platini Singh	Agronom y	2018	 Under delayed transplanting, rice cultivar CAU R3 gave significantly high yield and economic return on all three transplanting dates CAU R1 could be used as an alternative only upto 5th August transplanting 			
	2. Maize	l I		1	only upto by Hugust transplanting			
3.	Performance of quality protein maize under integrated nutrient management practices	Mr. Samborlan g K. Waniang	Agrono my	2012	 Utilizing the inter space in between the maize rows for green manuring with cowpea helped in improving yield and soil fertility. Application of 75% RDF in presence of 5 t FYM ha-1 found to increase yield and economics of quality protein maize under mid hill altitudes of Meghalaya. 			
4.	Effect of sources and levels of nitrogen on performance of sweet corn (<i>Zea mays</i> var. Saccharata) on mid hills of Meghalaya	Ms. K. Surjarani	Agrono my	2013	 Significantly superior cob yield and net return was obtained with nitrogen application of 120 kg ha -1. Organic sources of nitrogen (poultry manure and FYM) were at par with urea. All organic sources left positive effect on organic carbon content and availability status of N, P and K in soil after crop harvest. 			

Clas	sification/category: Intercrop	oping (Agro	techniques/1	<u>nutri</u> ent	management for maize based intercrops)
5.	Effect of planting pattern and organic nutrient sources on performance of Maize-cowpea	Mr.Vikra m Kumar	Agronom y	2014	➤ Paired row planting of maize is a better alternative to accommodate cowpea as an intercrop with maize
	intercropping				➤ Green leaf manure with <i>Ambrosia</i> weed biomass could partially substitute the requirement of traditional organic manure FYM.
6.	Nitrogen management for maize – legume intercropping in acidic soils	Ms. Saphina Mary Kurkalan g	Agronom y	2015	Maize+groundnut intercrop gave significantly higher maize equivalent yield and residual N in soil over maize+soybean intercropping.
					➤ N treatment 100% RDN of maize to maize+50% RDN of IC to IC and 75% RDN of maize to maize+100% RDN of IC to IC in maize+ legume intercropping gave statistically similar MEY and:C ratio.
					➤ Intercropped legumes gave higher pod and grain yield only upto 50% RDN of IC to IC.
7.	Effect of intercropped legumes and their planting pattern on the performance	Ms. Daphiban ri Donbar	Agronom y	2016	Growth and yields of intercropped maize was at par with sole maize.
	of maize- based cropping system	Lyngdoh			➤ Intercropping of groundnut in between the paired rows of maize was the best intercrop treatment as it gave higher MEY, LER, net returns and B:C ratio.
8.	Effect of population proportion of component crops on the productivity of maize+soybean intercropping	Telkar Shivkuma r Gajanan	Agronom y	2017	➤ Treatment 1:1R was a better alternate for maize-soybean intercropping as it gave significantly higher MEY, LER, net return and B:C ratio over sole maize.
	intercropping				➤ This treatment also recorded higher positive apparent N balance and left significantly higher available N in soil over sole maize
Class	sification/category: Cropping	g system(Ag	rotechnique	es/nutrie	nt management for rice fallows)
9.	Effect of planting geometry and nutrient sources on performance of pre kharif rice and its ratoon	Ms. Sangita Das	Agronom y	2015	➤ Both the main crop and ratoon of rice gave significantly higher yield at closest planting geometry of 15 cm x 15 cm.
					➤ Both main crop and its ration preformed at par with all the nutrient sources.
					Ambrosia GLM could be a good alternative to FYM for promoting organic crop production.

10.	Effect of sowing time on summer pulse(s) in lowland rice fallows	M. Bishonath Singh	Agronom	2018	 Cowpea and Frenchbean out performed the greengram and blackgram in rice fallows of midhills of Meghalaya Grain yields of all pulses was significantly more when sowing was done on 4th March 						
Cl	3.Groundnut Classification/category: Nutrient management										
11.	INM in groundnut(Arachis hypogea) in acidic soils of Meghalaya	Sushree Panda	Agronom y	2020	 Seed inoculation with <i>Rhizobium</i> and PSB+50 % RDF+FYM@2.5tha⁻¹ +Eupatorium weed biomass @ 5 t ha⁻¹ gave higher pod yield and net return over RDF. This INM practice also brought a marked improvement in soil bio-physico-chemical properties over the RDF. Eupatorium, a seasonal weed biomass could be an alternative organic source in FYM scarce situation. 						
12.	Evaluation of potato varieties under different irrigation methods in mid altitude of Meghalaya	Mr. Joy Kumar Dey	Agronomy (Water Managem ent)	2016	 ✓ The water requirement of Potato was estimated to be 59.69, 51.62 and 41.32 cm under gravity-fed drip, micro-sprinkler and furrow method of irrigation ✓ The BCR values for gravity-fed drip, micro-sprinkler and furrow method of irrigation was 2.27, 2.31 and 1.85, respectively ✓ The performance of Kufri Megha variety was found better over kufri jyoti, kurfi giriraj and kufri giridhar potato variety 						
13.	Influence of organic mulching on soil moisture and yield of rajma (<i>Phaseolus vulgaris</i> L.) varieties under mid altitude of Meghalaya	Mr. Yearbok Marwein	Agronomy (Water Managem ent)	2016	 Highest <i>in-situ</i> soil moisture depletion was recorded at 0-15 cm depths under un-mulched treatment The performance of weed mulch was found comparatively better in terms of availability and price Rajma variety "Selection-9" performed better under Barapani region, Meghalaya and BCR was found better for "weed + selection-9" combination 						
14.	Planting time and irrigation scheduling on the performance of potato in Ri-Bhoi, Meghalaya	Ms. Meghana Gogoi	Agronomy (Water Managem ent)	2017	 ○Real time based irrigation scheduling at IW/CPE of 1.25 was found suitable for potato production under Barapani, Meghalaya ○Potato tubers planted during 2nd Week of November gave higher gross return, net return and BCR 						
15.	Influence of fertilizer on the performance of black rice (Chakhou) under	Ms. Menaka	Agronomy (Integrated		➤ Black rice performed better under 50% Organic + 50% Inorganic, (Nitrogen fertilization)						

	M-1-1-1	C1	Nīntai aut		
	Meghalaya condition	Sharma	Nutrient Managem		under Barapani, Meghalaya with a reported
			ent)		higher grain yield (1.29 t ha ⁻¹)
					➤ Higher protein content (8.35%), iron
					content (1.80%) and BCR (2.12) were also
					recorded under 50% Organic + 50% Inorganic
					(nitrogen fertilization)
1.6					
16.	Performance of Potato (Solanum tuberosum L.)	Ms. Jolyne	Agronom	2019	❖ Irrigation scheduled at sprouting +
	under different irrigation	Margaret	y (Water		stolonization (stage) is most suitable for better
	scheduling and organic	Mawthoh	Managem		performance (tuber yield of 17.52 t ha ⁻¹) and
	manure in mid hill of Meghalaya		ent)		better BCR (2.83)
	Megnalaya				❖ Performance of Potato was found better under
					poultry manure application as compared to
					FYM.
17.	Influence of organic mulching and organic manures on growth and yield of black gram	Ms. Dhivya R.S.	Agronom y Nutrient Manage ment	2019	✓ Performance of blackgram (Uttara Var.) was found better with poultry manuring under Barapani, Meghalaya with BCR of 2.24 and economic yield of 1.05 t ha ⁻¹
18.	Evaluation of Sweet corn varieties under varied date of planting in mil hill of Meghalaya	Mr. Sidhartha Priyatam	Agronom y Water Manage ment	2019	• Under late sowing condition of sweet corn, under sowing during first week of July, the performance was found better for ASKH-6 (cob yield of 6.2 t ha ⁻¹), var, under organic amendment
					• Total soluble solid (TSS) content (11.50%) and protein content (10.44%) was found more for ASKH-6 sown during first week of July
	Cropping System				
19.	Effect of Planting Method in Potato-Maize Intercropping During Summer Season	Sanjenba m Dayanand a Singh	Agronom y	2012	Ridge and furrow system of maize and potato intercropping with 1:1 ratio may be sustainable system to protect from heavy rainfall and cold temperature in enhancing system productivity
20.	Direct and residual effect	Ipsita Kar	Agronom	2013	The interaction of green manuring with 60 kg
	of Green manure and phosphorus levels on baby		У		P ₂ O ₅ ha ⁻¹ produced higher yields by augmenting the residual soil fertility for succeeding babycorn
	corn-baby corn+				and groundnut crops.
	groundnut cropping				,
21.	system Dynamics of	Shreyosi	Agronom	2018	Baby corn being a short duration crop can be
21.	mineralization of Crop Residues Under Baby Corn-Baby Corn System	Roy	y	2010	used as contingency crop and increase the crop diversification of Meghalaya. Utilization of weed biomass improves the soil fertility.
22.	Development of Nitrogen	Shayana	Agronom	2018	The plant dry matter and leaf dry matter based

	Dilution Curve for Baby Corn Based on Leaf and Plant Dry Matter	Laishram	у		nitrogen dilution curve is developed at different stage for precise nitrogen management in baby corn
Rice ((Nutrient management)				
23.	Influence of phosphorus levels and bioinoculation on growth, spectral reflectance and yield of rice	Raghuvee r M	Agronom y	2013	Spectral indices such as NDVI and CI were influenced by P levels and higher were obtained by 60 kg P ₂ O ₅ at 90 days after transplanting. The physical and economic optima of 75.27 and 6.86 kg P ₂ O ₅ ha ⁻¹ were worked out with <i>Pseudomonas sp</i> .
24.	Effect of Phosphorus and Zinc on root morphology and productivity of Rice (<i>Oryza sativa L</i>).	Hadienlar isa Syiemlieh	Agronom y	2015	Application of 50 kg P ₂ O ₅ with 20 kg Zinc recommended for higher rice yield with its increased nutrient density in grains.
Maize	e (Nutrient management)				
25.	Performance of Quality Protein Maize (<i>Zea Mays</i> L.) (QPM) Varieties in Response to Nitrogen Levels.	Badapmai n Makdoh	Agronom y	2011	The QPM varieties HQPM 2 and HQPM 1 produced higher yields and are associated with more nutritional value especially proteins and their nitrogen requirement is higher than normal maize
26.	Effect of Integrated Nutrient Management Practices on Productivity and Quality of Baby corn	Ms. Jenny Moyong	Agronom y	2011	Phosphorus is most limiting plant nutrient in acid soils of Meghalaya, hence for sustainable quality baby corn production. It should fertilized with 40, 30, 20 kg NPK through chemical fertilizer + 7.5 t FYM ha ⁻¹ alongwith PSB.
	ndnut (Weed)	ı	ı	ı	1
27.	Seasonal Variation of Critical Period for Crop- Weed Competition in Groundnut (Arachis hypogaea L.)	Santosh Basavant Korav	Agronom y	2017	The critical period for groundnut and weed competition is 15-16 days after emergence. Further, early stage of winter groundnut is more susceptible to weed competition than <i>kharif</i> groundnut.
Rice					
Crop	Growth Modelling/ Climate	e Change			
28.	Response of Low land Cultivars to N- Application-A modelling approach"		Agronom y	2017	 2 research papers, one book chapter. Determined the Genetic Coefficient for CAU-R1, Shahsharang and Lampanah-1 rice varieties DSSAT-CERES-Rice model was found to be effective to predict yield and other growth parameters very closely.
29.	"Effect of Climate Change on the performance of Low land rice under N-levels	Mr. Tage Lampung	Agronom y	2018	 1 research paper Model run for ±1.2.3 °C temperature, ±19, 50% rainfall from normal and 450 and 500 ppm CO₂ Grain yield was found to increase at reduced rainfall unto 18.7 % and at the same time grain
	through DSSAT-Rice Model				rainfall upto 18.7 % and at the same time grain yield was reduced at +3°C up to 43.1 %. • Grain yield is expected to increase with the increase of CO ₂ level upto 500 ppn with 1°C increase of temperature. Thesis not yet submitted. Temporary withdrawal

	Nutrient Management on the Performance of Lowland Rice –A modelling Approach"	Dipankar Bora	у		wa	s approved as joined in the service
Maize	2		•	•	•	
Crop	Growth Modelling/ Climate		1		-	
31.	"Simulating Effect of Climate change on growth and yield of Maize under varying N-applications in the sub-tropical hills of Meghalaya"	Ms. Mesaya R. Marak	Agronom	2018	o II	DSSAT-CERES-Maize model was found to be effective in predicting yield and growth parameter at Level-1 conditions. Model run for ±1.2.3 °C temperature, ±19, 50% rainfall from normal and 450 and 500 ppm CO ₂ . Yield is expected to reduce as high as 27.8% at +3°C at present CO ₂ and +19% rainfall. Efferent level of N fertilizer though had be remental yoield of grain, it could not mitigate reveres the effect of climate change.
Pulses	S					
Resou	rce characterization and ev	aluation				
32.	"Influence of Micro- climate on performance of Kharif Black gram (Vigna mungo)	Ms. Yami Bei	Agronomy	20	017	 SBC-47 cultoivar was found to be adaptive to Umiam climate. SBC-47 can also be sown till 3rd week of August without much compromising the yield. 14th July was found to be the best sowing date for all the varieties, i.e. PU31, SBC-42 and SBC-47
YE	AR 2020 JAN-2022 JUNE					
33.	Weed Diversity and its Interference in Pea (Pisum sativum L.)	Mr. Arindam Deb	Agronomy	20	021	 For optimum utilization of resources and maximization of yield, weeding shouldbe done between 21 to 48 DAS or after 260 to 510 °C Day accumulated heatunits. The weed population in the field beyond 20.91 plants m-2. cause significant yieldreduction in pea crop.
34.	Performance of Lentil Cultivars under Different Organic Mulching	Ms. Karupaku la Shirisha	Agronomy		021	 Lentil (Var.PL-4) performed better under paddy straw mulch, highest economic yield (723.3 kg ha⁻¹). Highest water productivity and BCR was recorded for PL-4 (3.22 kg ha⁻¹ mm⁻¹) and 1.79, respectively.
35.	Performance of Black Gram (Vigna mungo L. Hepper) under Various Date of Sowing in Mid- Hills of Meghalaya	Mr. Pradosh Kumar Parida	Agronomy	20	021	 The performance of black gram varieties PU-31 (964.11 kaha⁻¹) was found superior over other three varieties (<i>i.e.</i>, PU 1, PU 30 and INDIRA) Black gram sown on 5th march (1st week of March) performed better as compared to other date of sowing at Meghalaya

					Black gram yield decreases with both
36.	Effect of Doses and Split Application of Nitrogen on Wheat (Triticum aestivum L.) in Mid Hills of Meghalaya	Mr. Akkiredd y Karnakar	Agronomy	2022	 Nitrogen treated wheat recorded significantly higher plant growth, yield attributes and yields in wheat as compare to control (non nitrogen treated) wheat plots. Nitrogen application @ 120 kg ha-1 in wheat recorded significantly high plant dry weight, yield attributes; grain yield, net return and B:C ratio over the N applications of 80 and 40 kg N ha-1. Further, N application in three equal splits (1/3 at basal+1/3 at CRI+1/3 at booting) recorded significantly more plant dry weight, yield attributes, grain yield, net return and B:C ratio over the treatment when all N was applied as basal application. Uptake of N and P varied significantly both due to doses and split application of N in wheat.
37.	Growth, Yield and Nutritional Quality of Cowpea (Vigna unguiculata L.) as Influenced by Zinc Fertilization	Ms. Manashi Baruah	Agronomy	2022	 Growth, yield and nutritional quality of cowpea differed significantly due to zinc fertilization. Application of zinc @ 2.5kg ha⁻¹ as basal +one foliar spray @ 0.5% at pod initiation stage was more effective than its basal application @ 5kg ha⁻¹ or foliar spray @ 0.5% at pod initiation stage. Soil zinc content varied significantly due to various zinc application methods.
Non-c	crop			l	
	irce characterization and ev		source Conserv		-
38.	"Soil Resource Mapping of a Micro-watershed at Ri-bhoi District of Meghalaya"	Mr. Adelbert Kharlyng doh		2013	 Mapped soil resources for Nongpoh watershed of Meghalaya with 77% inceptisols, 19% entisols and 4% alphisols Eight sub-groups of soils were identified with TypicDestrudepts dominating the watershed. Published 1 research paper
39.	" Land Use Planning using GIS and RS at Micro-Watershed Level, Meghalaya	Ms. Carolyn Zothansia mi	Soil Science and Agricultural Chemistry	2013	 Published 1 research paper Studied the present land uses in the watershed dominated by Rice, Maize, Pineapple and built ups. Based of soil characteristics alternative

					land use was suggested.			
40.	"Land Use Effect on	Ms. P.	Soil Science	2018	Published 2 research papers.			
40.	Aggregation of Acid Soil	Helena	and	2010	Found stable soil aggregation in upland			
	under Humid Sub-tropic"	Devi	Agricultural		rice followed by Jhum			
	unuur riumiu bue trepre	2011	Chemistry		Tice followed by shall			
41.	"Development of Soil	Mr.	Soil Science	2018	Published research paper in Scientific			
	Erodibility Index	Manish	and		Reports (Nature Group) and developed soil			
	MapforRi-bhoi District of	Olaniya	Agricultural		erodibility map for Ri-Bhoi disctrict of			
	Meghalaya"		Chemistry		Meghalaya			
42.	"Comparison of	Mr. Libi	Soil Science	2019	Published 1 research paper			
	Infiltration Models for	Robin	and		• Found Horton Model is effective on all the			
	Suitability on Hilly		Agricultural		slopes from flat land to 23% slopes			
	Slopes"		Chemistry					
43.	" Estimation of Soil Loss	Mr.	Soil Science		• Published 1 paper in Sustainability and two			
	through RUSLE in	Susanta	and		other paper in different journal. Two more			
	Nongpoh Watershed"	Das	Agricultural		papers are submitted for consideration.			
			Chemistry		• Annual soil loss in the watershed was			
					ranging from 0-1348.08 t/ha/y with an			
					average of 59.94 t/ha/yr, which is			
					extremely highMMF model estimated by about 5% less			
					soil loss than RUSLE model			
44.	"Soil Structural Stability	Mr. Alok	Soil Science		• Son ioss than RUSEE model			
77.	and Quality under	Maurya	and					
	Different Land Uses"	1,140,17 4	Agricultural					
			Chemistry					
45.	"Estimation of Water	Ms.	Soil Science		•			
	Footprints in the Peri-	Labetshis	and					
	Urban Villages in	ha	Agricultural					
	Meghalaya"	Kharbhih	Chemistry					
	si Mandarin	14*						
	ource characterization and		g-:1 g-:	2011	D. 111 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
46.	"Soil Hydro-physical	Mr.	Soil Science	2011	• Determined all soil physical properties of a			
	properties and productivity of Khasi	Eliazer Ch.	and Agricultural		Khasi Mandarin orchards which might			
	Mandarin along the Hill	Momin	Chemistry		have influenced on crop productivity.			
	Slope of Meghalaya"	MICHILL	Chemistry		• Soil water holding capacity was found to be poor where crops were also not			
	Stope of Meghanaya				performaing well.			
47.	"Soil Fertility and	Ms. R.	Soil Science	2011	Determined all soil chemical properties to			
'''	Productivity of Khasi	Vanlaldu	and		understand their effect on crop			
	Mandarin along the Hill	ati	Agricultural		productivity.			
	Slopes of Meghalaya"		Chemistry		• Rejuvenation programme of Khasi			
					mandarin should be slope specific and			
					acidity was found to be most important			
					factor affecting crop productivity.			
	etables							
Rese	Resource management/ water management							

48.	"Derivation of Crop Coefficient of Tomato and	Ms. Moutushi	Soil Science and	2015	Found crop coefficients for tomato and capsicum.
	Capsicum in Sub-Humid Mid Hills Region of	Tahashild ar	Agricultural Chemistry		Capsicum 0.25 0.59 0.24 Tomato 0.55 1.04 0.78
	Meghalaya"				Published 3 research papers. • Blaney-Criddle method can be used in absence of data for P-M Method of ET ₀ estimation
49.	Effect of Phosphorus and Sulphur on Nutrient Uptake of Black Gram (Vigna mungo L. Hepper) in Acid Inceptisol	Basant Tamang	Soil Science and Agricultural Chemistry	2017	• The combined application of P and S had significant effects on seed and stover yield of black gram. The optimum seed yield (15.08 g pot ⁻¹) and stover yield (39.20 g pot ⁻¹) were recorded with combined application of 60 mg P kg ⁻¹ soil and 30 mg S kg ⁻¹ soil indicating synergistic effect of P and S on each other as both the nutrients mutually help in their absorption and utilization by black gram probably due to balanced nutrition, which was statistically at par with combined application of 80 mg P kg ⁻¹ soil and 40 mg S kg ⁻¹ soil.
50.	Critical Limits of Available Phosphorus for Rapeseed (<i>Brassica</i> campestrisvar. toria) Growing Acidic Soils of Meghalaya	Alok Maurya	Soil Science and Agricultural Chemistry	2017	• The critical limit of available P for Rapeseed (cv. M-27) by Bray P ₁ soil test method were established using Linear Response and Plateau (LRP) model as described by Waugh <i>et al.</i> (1973) as 38.5 kg P ha ⁻¹ under Rock Phosphate and 31.0 kg ha ⁻¹ under Single Super Phosphate in Alfisol, whereas in Inceptisol, the critical limits of available P were established as 37.0 kg P ha ⁻¹ under Rock Phosphate and 29.5 kg ha ⁻¹ under Single Super Phosphate.
51.	Effect of Organic and Inorganic Nutrient Sources on Performance of Cabbage (<i>Brassica oleracea</i> L. var capitata) in Inseptisol	Chingak PW Konyak	Soil Science and Agricultural Chemistry	2018	• 50% RDF + 50% N through vermicompost is the best option for obtaining optimum production of cabbage with superior quality and maintaining soil health of for acid Inceptisol of Meghalaya.
52.	Effect of Nitrogen Application through Urea and Azolla on Growth, Yield of Rice (<i>Oryza</i> Sativa L.) and Temporal Soil Phosphorus Availability	Shubham Singh	Soil Science and Agricultural Chemistry	2018	• Application of 60 kg N ha ⁻¹ through urea in combination with incorporation of azolla @ 16000 kg ha ⁻¹ is the best option for getting optimum production of rice and sustainability of soil health in low land acid soil of Meghalaya. Moreover, the farmers can manage around 30 kg N through incorporation of azolla @ 16000 kg ha ⁻¹ in rice crop instead of supplying this through nitrogenous fertilizers.
53.	Performance of Pea (Pisum sativum L.) under	Vanlalma Isawmi	Soil Science and	2019	The P concentration in pea straw increased with the increased residual P, whereas the

	Phytoremediated heavy Metal Polluted Soil with Residual Phosphorus	Sailo	Agricultural Chemistry		concentration of Cr, Cd, Ni, Pb and Co followed the reverse trend and it decreased with each increasing level of residual P. • The increasing soil available P maintained by higher P application rates for preceding phytoremediating crop may efficiently utilized to phytoremediate the remaining heavy metals contents of the coal mined heavy metals polluted soil and almost normal yield levels of pea cv. Arkel can be achieved with 100 mg kg ⁻¹ soil level of residual P.
54.	Biochar as Component of Integrated Nutrient Management and its Significance in Tomato (Solanum lycopersicum L.) Productivity in Acid Soil	Ogubuya na Srikant Yadav	Soil Science and Agricultural Chemistry	2019	Plant height, number of fruits/plant, fruit size and fruit yield of tomato was superior with the application of biochar @ 4 t/ha with vermicompost @ 2.5 t/ha and 100% RDF Soil reaction increased with the graded doses of biochar. However, the bulk density showed reverse trend and the lowest bulk density was observed with the application of T_{16} - 100% RDF +B @ 4t/ha + VC @ 2.5 t/ha.
55.	Response of black gram (<i>Vigna mungo</i> L. Hepper) to phosphorus and boron fertilization and their temporal availability in acid Inceptisol	Muddana Sri Sai Charan Satya	Soil Science and Agricultural Chemistry	2020	The combined application of phosphorus @ 75 kg P ₂ O ₅ ha ⁻¹ and boron @ 1.5 kg ha ⁻¹ is suitable for better growth, higher yield and nutrient uptake by black gram in acid Inceptisol of Meghalaya.
56.	Evaluation of Soil Carbon stock under different land uses in Meghalaya	Fellycia S. Basaiaw moit	Soil Science and Agricultural Chemistry	2012	 The CEC (Cmol (P+) kg-1) is found high in lowland (Bhoirymbong) than the slope lands due to higher clay content. It was inversely relationship between SOC stock and BD. Pine forest lowers the SOC content, pH and CEC than permanent grassland. soil inorganic carbon (SIC) was high at slope land (Sawkilo) of permanent grasses before converting to agricultural land The SOC stock was found in the order of high altitude slope land (CPRS)> Low lands (Bhoirymbong and Sawkilo)>12%slope land Pyllun. The long period of Rice-Fallow system at lowlands would store more SOC than the slope lands under similar type of management (no addition of manures and fertilizers). The CENTURY simulation SOC stock shows that SOC dynamics will stabilization after 25 years.

	Tree of a Charles of 1	D	0-11 0.1	2012	Diff
57.	Effect of Integrated Nutrient Management on Soil Organic Carbon pools and rice productivity	Rupaia Siangshai	Soil Science and Agricultural Chemistry	2013	 Different oxidizable organic carbon fractions (OOC), particulate organic matter (POM), microbial biomass carbon (MBC), dissolved organic carbon (DOC), hot water extractable carbohydrates (HWC) and water extractable carbohydrates (WC) were increased with the addition of organic manure (FYM). SOC pools were found highest at FYM@ 10 tone ha⁻¹ + RDF dose of NPK (T5). the highest grain and straw yield of rice and harvest index at T5 treatment.
58.	Spatial variability of soil organic carbon (SOC) and available NPK under different toposequences and land cover management	David Long Pani Tao	Soil Science and Agricultural Chemistry	2015	(i) Land cover/uses effect on SOC are found as guava orchard>citrus orchard>ginger/turmeric cultivation at NBPGR1>maize-vegetable>medicinal plant (perilla, coix) cultivation>buckwheat-pulses>maize-fallow>pulses-vegetable>ginger/turmeric cultivation at ICAR-KVK. (ii) The best described semivariograms of SOC and available NPK have been exponential, pentaspherical, exponential and exponential model. The nugget/sill ratio of ICAR-Horticulture is weak spatial dependence of SOC and available N and moderate spatial dependence of available PK.
59.	Evaluation of soil test methods for available boron in acidic soils	Rokogen o Charlie- U	Soil Science and Agricultural Chemistry	2015	 Mehlich-3 and DTPA-Sorbitol can serve as an alternative to hot water without affecting the reliability of B testing in acidic soils. Although hot water can continue as B extractant for NER India, if multi-nutrient extractant is not required. Being a multi-nutrient extractant, adoption of Mehlich-3 and DTPA-Sorbitol can improve the rapidity of soil testing, saving substantial amount of time, cost and labour involved therein.
60.	Effect of fallow age of Jhum on soil properties in West Garo Hills district, Meghalaya	Manjunat h R.L.	Soil Science and Agricultural Chemistry	2017	 Salient findings: Mapping of shifting cultivation using remote sensing and GIS Many farmers of West Garo Hills district were enthusiastically continued second year crop after jhuming. The most prevalent jhum cycle was 4 to 9 years in the West Garo Hills district (68.5%). The minimum jhum fallow period should

					be atleast 6-7 years to resotore the soil properties in the district at present time.
61.	Temporal soil nitrogen availability and its influence on rapeseed (<i>Brassica campestris</i> L.) under varying nitrogen sources	Sowjanya T.V	Soil Science and Agricultural Chemistry	2019	 ✓ Application of 75% N_{Urea}+25% N_{FYM} was the most efficient nutrient management practice for enhancing rapeseed production. ✓ The highest available K recorded in the treatment receiving 100% N_{FYM}. The higher growth, N uptake, yield attributes and yield were recorded with treatment receiving 75% N_{urea}+25% N_{FYM}.
62.	Assessment of Soil Biochemical Quality Indices of Rice-Fish Farming System in Apatani Plateau	Ms. Anindita Das	Soil Sc. & Agril. Chem.	2021	✓ The soil biochemical quality index (SQI) of Apatani rice-fish farming system as a time-tested natural farming unit recognized as Apatani Cultural Landscape by UNESCO was developed for the first time. Findings indicated that rice-fish farming system supported marginally lesser SQI values based on soil biochemical traits relative to that in adjacent reserve forest sites.
63.	Silicon Nutrition in Rice as Influenced by Sources and Application Methods	Mr. Palla Madhu Babu	Soil Sc. & Agril. Chem.	2021	✓ The findings revealed that the application of silicic acid hydrate as seedling root dipping method,Si@225 mg kg⁻¹) and sodium meta silicate as foliar spray (Si @1%) at vegetative stage and reproductive stage performed best in terms of yield attributing parameters and grain yield of transplanted rice.
64.	Dynamics of Soil Nitrogen and Phosphorus vis-à-vis Nutrient Regimes in Lowland Rice Field	Ms. Shilpi Gupta	Soil Sc. & Agril. Chem.	2021	 NH4 +-N ranged in between 1.76 mgl⁻¹ to 4.89 mgl⁻¹ at 0-15 cm depth and in between 1.69 mgl⁻¹ to 4.76 mgl⁻¹ at 15-30 cm soil depth NO3 −-N ranged in between 1.51 mgl⁻¹ to 4.21 mgl⁻¹ at 0-15 cm depth and in between 1.41 mgl⁻¹ to 4.27 mgl⁻¹ at 15-30 cm depth ✓ P ranged in between 0.55 mgl⁻¹ to 1.26 mgl⁻¹ at 0-15 cm depth and in between 0.47 mgl⁻¹ to 1.16 mgl⁻¹ at 15-30 cm depth of solution.
65.	Interaction of Genotype and Fertilization on Phosphorus Uptake Efficiency in Rice Under Acid Soil	Ms. Oyem Taki	Soil Sc. & Agril. Chem.	2021	✓ The positive effect of <i>Pup1</i> ⁺ (phosphorus uptake gene) on rice genotypes could be enhanced when combined with nutrient management practice i.e.50% RDF + Seedling root-dip (SRD) in single super phosphate (SSP) soil slurry @ 112.5 mg P kg ⁻¹ soil for 10 h + CAU Bioenhancer @ 2.5 kg ha ⁻¹) in terms of higher grain

					yield, PUpE and PUE in low P acid soils.
66.	Development of Soil Physico-Chemical Quality Index of Rice-Fish Farming System in Apatani Plateau	Ms. Narang Ampi	Soil Sc. & Agril. Chem.	2021	The soil physico-chemical quality index (SQI) of Apatani rice-fish farming system as a time-tested natural farming unit recognized as Apatani Cultural Landscape by UNESCO was developed for the first time. Findings indicated that rice-fish farming system supported relatively better SQI values on physico-chemical properties to that in adjacent reserve forest sites.
67.	Phosphorus Fractions Influenced by Liming in Acid Soil	Mr. Bisharlan g Wannian g	Soil Sc. & Agril. Chem.	2021	Saloid-P (easily available bounded P) attend maximum at 30 DOI (11.46 ppm) and 45 DOI (9.84 ppm) with treatment T ₁ (1 t ha ⁻¹) which was statistically at par with T2 (lime @ 2 t ha ⁻¹) and T3 (lime @ 3 t ha ⁻¹). Maximum changes of different P fractions one form to another was occurred between 30 - 60 DOI with lime 1 -2 (@ t ha ⁻¹). ✓ The best lime amelioration for effective acid neutralization was 1t/ha at 30-60DOI
68.	Developing Soil Testing Protocol for Potentially Available Phosphorus in Acidic Soils under Organic Production System	Ms. Pritisha Patgiri	Soil Sc. & Agril. Chem.	2021	For successful organic cultivation, it may be advised to test organically managed acidic soils for potentially available phosphorus through citric acid and double lactate extractants, and accordingly recommend P manorial plan.
69.	Soil Organic Carbon Estimation from Rice Fallow Using Satellite Remote Sensing Data	Ms. Priya Das	Soil Sc. & Agril. Chem.	2021	 The PCR model was the best suitable for SOC prediction of such fragile topographical settings as SOC (%) =8.41+20.55*NDVI+1.14*GNDVI-12.34*MSAVI2+0.04.98*EVI, (R²=0.51, RMSE = 0.17) in the month of October. The NDVI, GNDVI, MASAVI2 and EVI are highly sensitive in fragile topography with vegetation system especially in the month of October.
70.	Evaluation of Phosphorous Extractants for Organically Managed Acid Inceptisol under Pea (Pisum sativum L.) Cultivation	Mr. Vinukond a Abhishek Raj	Soil Sc. & Agril. Chem.	2022	✓ Bray P1 + 0.05(M) 2, Keto glutaric acid + 0.02(M) HCl at pH 4.0 may be identified as a suitable combination of extractants for estimating potentially available phosphorus in organically grown pea in acidic soil of Meghalaya.
71.	Zinc Biofortification of French Bean (<i>Phaseolus vulgaris</i> L.) in Acid Inceptisol	Ms. Sultana Jerifa Ullah	Soil Sc. & Agril. Chem.	2022	✓ The application of zinc as basal @ 7.5 kg ha ⁻¹ combined with foliar spray @ 0.5 per cent through ZnSO ₄ was found most suitable option for getting higher green pod yield of French bean fortified with

	higher Zn content in acid Inceptisol of Meghalaya.
--	--

SCHOOL OF CROP IMPROVEMENT

Sl.	Title of the thesis	Name of the	ı		
No.	Title of the thesis	Name of the student	Major subject	Yea r of	Outcome
110.		Student	Subject	pass	
				ing	
			1. Ri		<u>I</u>
		DISCIPLINE GE			T RRFFDING
	CLASSIFICATION				TERIZATION AND EVALUATION
72.	Genetic analysis of upland rice genotypes and allele mining for phosphorus deficiency tolerance	Mr. Aibanshan K. Dohling	GPB	2011	Line x Tester analysis was performed to identify the best upland rice genotypes and cross combinations that can be used for varietal development programme to develop soil acidity tolerant upland rice and this led to identification of lines like Dhan and Epyo and testers like RCPL 116 and Bhalum 2 with the best general combining ability while the crosses ARR09 X RCPL116 (L4xT2), N902 X RCPL116 (L3xT2), EPYO X N902 (L1xT3) showed the best specific combining ability. Allele mining on a selected panel of 16 tolerant and susceptible genotypes for <i>PUP</i> 1 and <i>PTF1</i> genes revealed presence of different alleles in some of the genotypes.
73.	Divergence studies and path analysis of yield contributing traits in lowland rice (Oryza sativa L.)	Mr. Loukham Varun Singh	GPB	2012	Data on 12 yield contributing traits for 21 lowland rice genotypes of the North East India analyzed in 2 different environments, one with application of organic manure and the other with synthetic chemical fertilization, revealed that biological yield (0.772) in organic environment and harvest index (0.6463) in chemical fertilizer environment had the maximum direct effect towards grain yield. The two fertilization regimes revealed opposite path coefficient effect for panicle length while path coefficient of days to 50% flowering, plant height, panicles per plant, grains per panicle, 100 grains weight, biological yield and harvest index showed similar positive effect in both the different fertilization regime. Path coefficients of tillers per plant, spikelets per panicle and percent spikelet fertility showed negative effect in both the environments. Based on metroglyph index score of the twenty-one lowland rice genotypes of the North East India, LR 15 (Priya) had the maximum index.
74.	Assessment of genetic diversity of upland rice (Oryza sativa L.)	Ms. PaharasainingSyi emlieh	GPB	2012	Twenty two accessions of rice consisting of short bold, medium slender/mild scented and strong scented including CAU R-1 and

	genotypes from North				Shahsarang were used to study crossability and
	Eastern Hill Region of				genetic diversity by 11 RAPD and 7 SSR
	India				primers. The Jacaard's similarity coefficient
					ranged from 0-0.6 and 0-0.86 in RAPD and SSR analysis.
75.	Assessment of	Ms.	GPB	2012	In the present investigation, a total of 26
13.	molecular variation in	ThoithoiHuidro	OLD	2012	primer pairs were tested on 8 genotypes with
	the known pericarp	m			varying pericarp and endosperm colour to
	colour related genes in	***			assess the molecular variation in the known
	purple Rice (<i>Oryza</i>				pericarp colour related genes in purple rice
	sativa L.)				(Oryza sativa L). The primer AF-12 amplified
					a fragment where, in genotype 12 (Daya- white
					pericarp), a new deletion was seen immediately
					after the 'G string' of Rc-g. The characteristic
					14bp deletion was absent in all test genotypes.
					There was removal of the stop codon in
					genotype 13 (Chak - haoPoireiton). Our results suggest that deletion at the 'G string' without
					the 14bp deletion can produce a white pericarp
					phenotype.
76.	Genetic analysis of	Mr. Ashim	GPB	2014	A total of 194 NILs derived from crosses
	yield contributing	Debnath			between rice cultivar Swarna and two
	traits in lowland rice				accessions of O. nivarawere screened under
	genotypes and NILs				acidic soil and hydroponic conditions and lines
	under acidic soil				performing well were identified. These lines
					were K 416, K 413, K 410, S 312, S 310M and
					S 296.Through Line X Teter analysis, Sahbhagi Dhan X Kasalath and Priya X IR 24
					were identified as best cross combinations.
					Priya and Sahbhagi Dhan were identified as
					best general combiners.
77.	Morphological and	Ms. Anni Lego	GPB	2017	Genotypes SR-3925-13-1, IRCTN-91-77, Tami
	molecular				Hikari, Niver, Gurrah were identified as early
	characterization of				flowering genotypes to be used for breeding
	upland rice germplasm				programme. For primers DRRMRF3-5 and
	and screening for the presence of fertility				DRCG-RF4-14, 89 and 125 genotypes, respectively were found to be homozygous for
	restorer genes				restorer gene.
78.	Grain quality	Mr. Wadbok		2018	Ja-Pnah (82.18%) followed by IC-465275
	characterization and	Rani			(81.55%) recorded the highest carbohydrate
	molecular diversity				content, CT3-D-4 (11.69%) recorded the
	analysis of aromatic				highest protein content %, IC-137342 (0.99%)
	rice (Oryza sativa L.)				recorded the highest fat content. Three major
	genotypes using SSR markers				clusters were identified; Cluster I is the largest cluster with 15 genotypes, Cluster II is the
	markers				second largest cluster with 13 genotypes and
					Cluster III consisted of 4 genotypes. Highest
					PIC value was recorded for RM447 (0.750)
					and lowest for RM125 (0.236). Maximum
					diversity was observed between IC-137401 and

79.	Agro-morphological characterization and genetic diversity analysis of aromatic rice (<i>Oryza sativa</i> L.) genotypes using SSR Markers	Mr. Pramod Kumar		2019	IC-342368 (0.98), followed by IC-342368 and IC-326284 (0.97). The genetic distance between the 42 accessions of aromatic rice ranged from 0.03 to 0.87; genotype RM495 (82.6%) recorded highest per cent of polymorphismIC-342368 and IC-401209 showed maximum genetic distance on the basis of morphological analysis. The genetic dissimilarity between the 42 accessions of aromatic rice ranged from 0.06 to 0.42.
80.	Molecular characterisation and evaluation of a panel of aromatic mutant-M ₇ rice (<i>Oryza sativa</i> L.) for yield performance and blast resistance	Mr. Samuthirapandi S.		2019	Maximum genetic dissimilarity was found between IC-137401 and Ja-Shulia genotypes. A total of 60 alleles were detected in 22 loci with minimum and maximum of 2 and 4 alleles per locus with average of 2.7 in 33 genotypes, respectively. PIC value ranged from 0.061 (by RM251) to 0.616 (by RM452) with average of 0.390. Molecular analysis of blast resistance in a 33 genotypes showed that, all mutant genotypes had <i>Pi1</i> , <i>Pi12</i> and <i>Pi20(t)</i> blast resistant genes out of 5 genes screened except <i>Sabhagidhan</i> (as resistant check) genotype which had four resistant gene <i>viz.</i> , <i>Pi1</i> , <i>Pi2</i> , <i>Pi12</i> and <i>Pi20(t)</i> and <i>Chakhao poireiton</i> (susceptible check) which had only two resistant genes <i>viz.</i> , <i>Pi1</i> and <i>Pi12</i> . <i>Pi2</i> was
	Q7.15			(m x G (found in only Sabhagidhan
81.	Path analysis for yield component traits in upland rice and allele mining for aluminium toxicity tolerance	Ms. KhriedinuoPfukr ei	GPB	2011	A combination of 23 yield contributing characters spread over various stages of crop growth from a set of 21 upland rice genotypes was used to predict the response of grain yield using path analysis. Partitioning of correlation coefficients between response and predictor traits, revealed that traits such as the number of primary branches/panicle (0.630), spikelet fertility (-0.673), number of filled grains/panicle (0.530), 100 grain weight (0.184), number of tillers (0.858), EST (0.498) and panicle weight (0.692) had significant direct or indirect effect on grain yield/plant. For allele mining, eight rice genotypes (4 tolerant and 4 susceptible) were selected based on relative root growth (RRG) from the results of a hydroponic experiment in Magnavaca solution, where aluminium was used as treatment.

82.	Screening of a core set of rice germplasm for response to low light intensity and identification of tolerant and	Mr. Karyom Bam	GPB	2014	Characters like spikelet fertility %, grain yield/plant and biomass are important characters for screening rice genotypes under low light intensity.IRCTN 91-84, IRCTN 91-94, RCPL 1-4C and RCPL 1-9C were identified as tolerant to low light intensity.
	susceptible genotypes				IRCTN 91-84 can be used as donor for
92	Englantian of since	Ma	CDD	2015	breeding for low light tolerance.
83.	Evaluation of rice mini-core collection for response to Phosphorus deficiency under lowland conditions	Mr. Laldintluanga	GPB	2015	Indian rice mini-core along with local accessions evaluated (#154) for iron toxicity and low phosphorus deficiency tolerance. Genotypes like LR 18-2, BAM 5891, BAM 698, BAM 1264, BAM 1057, BAM 1098, BAM 785 and BAM 8364 were identified as good performers in lowland soil conditions. These identified lines could be used to study the mechanism of tolerance as well as potential donors for traits listed above.
84.	Line X Tester analysis of a set of rice genotypes and evaluation for heat tolerance at grain filling stage	Mr. Lalruatmawia	GPB	2015	Trait profiling of genotypes under heat treatment showed that genotypes TRC 12, RCPL 1-136, RCPL1-186, RCPL1-188 could be good donor sources for key breeding traits like grain yield/plant, spikelet fertility, root biomass, 1000 grain weight etc. The trait profiling also predicted ten cross combinations of which TRC 9 x TRC 12 and RCPL1-188 x TRC12 were predicted as the most promising.
85.	Evaluation of rice mini core collection for aluminium toxicity tolerance and blast resistance under upland conditions	Mr. N. Radhakishore	GPB	2015	Indian rice mini-core along with local accessions evaluated (#154) for aluminium toxicity tolerance and blast resistance. UR 3, BAM 811, JR 31 and UR 17-2 were identified as best performers for aluminium toxicity tolerance.
86.	Evaluation of rice mini core collection for response to low temperature at reproductive stage	Ms. BapsilaLoitongb am	GPB	2015	Indian rice mini-core along with local accessions evaluated (#154) for cold tolerance. For low temperature tolerance, UR 100 and were identified as tolerant ones.
87.	Marker assisted pyramiding of drought tolerant QTLs qDTY1.1 and qDTY3.1 in rice variety Samba Mahsuri Sub-1	Ms. Dake Deepika	GPB	2020	Pyramided lines SABD-9, SABD-76, SABD-79 and SABD-80 carrying two drought tolerant yield QTLs qDTY1.1 and qDTY3.1 performed well, showing greater tolerance than parents under stress conditions.
00					TRESS TOLERANCE
88.	Marker assisted selection (MAS) of backcross progenies for introgression of	Mr. George Ferdinand War	GPB	2013	Eleven best advance back cross lines carrying multiple blast resistance genes in the background of CAU R-1 and Shahsarang were selected.

	blast resistance genes				
89.	in lowland rice Marker assisted selection (MAS) of backcross progenies for introgression of blast resistance genes in upland rice	Ms. Mayalang RJ Najiar		2014	A set of backcross progenies derived from two distinct crosses were evaluated for presence of favourable allele for blast resistance followed by phenotypic screening revealed 11 families with 45 plants carrying 1 gene and 29 plants carrying 2 genes of interest. From the other 200 BC3F1 progenies screened for donor foreground of IRBL 9W, 1 family showed positive results with 3 plants carrying the gene of interest. Characters for the BC3F1progenies were also recorded to assist background selection to identify which progeny resembles the recipient parent, Bhalum 3 the most.
	CI	LASSIFICATION/C	CATEGORY:	WIDE I	
90.	Intervarietal hybridization and genetic diversity of rice by molecular markers	Ms. Diploma Debbarma	GPB	2013	Fourteen RAPD and 8 SSR primers were used to assess the genetic variability of 17 commercially cultivated rice varieties from North India and North East (CAU R-1 and Shahsarang). Jacaard's similarity coefficient for RAPD ranged from 0.28-0.77 whereas for SSR it ranged from 0.07-1.
	CLA	SSIFICATION/CA	TEGORY: VA	ARIETA	AL DEVELOPMENT
91.	Molecular characterization of advanced breeding lines of lowland rice and their evaluation for grain quality traits	Mr. I. Gopinath	20041. 72	2018	Superior breeding lines, <i>viz</i> . CAUS103, CAUS104, CAUS105 and CAUS107 were identified for nomination to AICRP trials. Lines carrying favourable alleles for <i>Chalk5</i> , <i>Pita</i> and <i>Pi54</i> were identified. SSR marker profile for advanced breeding lines were obtained.
92.	Characterization and evaluation of advanced breeding lines of lowland rice with respect to agro- morphological traits	Mr. Ashish Rai		2018	Superior breeding lines, <i>viz.</i> CAUS103, CAUS104, CAUS105 and CAUS107 were identified for nomination to AICRP trials. Blast resistant and Fe toxicity tolerant lines were obtained. DUS characteristics were recorded for all the lines.
93.	Genetic analysis of elite rice breeding lines for allelic status of agronomically important genes and combining ability	Mr. Shanmugam A		2019	Five blast resistance genes (<i>Pi1</i> , <i>Pi12</i> , <i>Piz</i> , <i>Pb1</i> and <i>qPbm11</i>) and two yield genes (<i>SCM2</i> and <i>TGW6</i>) were found to be fixed in the selected elite lines. Crosses, viz. CAUS105 x VL40387, CAUS103 x UPRI-3908-18-2-1-1 andCAUS 105 x HPR 2921 were found to have significant SCA, good to moderate parental GCA, with good <i>per se</i> performance for yield related traits and thus, these could be forwarded for pure line development using marker assisted selection.
YEAR	R JAN 2020- MAY 2022			•	
94.	Assessment of Genetic	Ms. Puthem	Gen. &	2021	Field trials and hydroponics screening

	Variation in Lentil (Lens culinaris Medik) for its Agronomic Performance, Aluminium Tolerance and Phosphorus Uptake Efficiency	Victoria Devi	Plant Breeding		identified PDL-1, DPL-62, L-7903, L-4147 as genotypes having high PUE. L-7903, PAL-6, PAL-7 and DPL-62 showed highest performance as most Al tolerant in acidic condition which have high ability to give high yield in field trials
95.	Genetic Analysis of Grain Yield and Quality Parameters in a Set of Breeding Lines Derived from BLB Resistant Donor and Selected Mutants of Rice (Oryza sativa L.)"	Mr. Manoj M.	Gen. & Plant Breeding	2021	The genetypes NEH-2, NEH-13 (kernel length after cooking), NEH-15, NEH-11, NEH-14, NEH-2, NEH-12, NEH-4 (kernel breadth after cooking), NEH-2 (gel consistency), M-11, NEH-18, NEH-2 (alkali spreading value), M-1 (water uptake ratio) and NEH-4 amylose content showed better performance for cooking characteristics among the other genotypes. The genotype M-3 (protein content), NEH-2 (total carbohydrate content) and NEH-8 (fat content) showed the highest nutritional value than other genotypes.
96.	Genetic Variability Study in a Set of Breeding Lines Derived from BLB Resistant Donor and Selected Mutants of Rice (Oryza sativa L.) for Aluminium Tolerance and Phosphorus Uptake Efficiency (PUE) under Hydroponic Condition"	Ms. Shefali Gupta	Gen. & Plant Breeding	2021	Genotypes NEH-1, NEH-2, NEH-7 had the PUE valueand also had the low difference between PUE control and PUE treatment. Higher PUE in Al stress acidic condition in hydroponics reveal genotypes with better yield potential and capability to absorbed inorganic P at normal P supply with high Al tolerance capacity
97.	Divergence Analysis of Advanced Breeding Lines of Rice in Terms of SSR Markers, Yield and Grain Quality Characteristics"	Mr. Lokesh Kumar	Gen. & Plant Breeding	2022	Line ULRC 6*7-5-1-1 was the best performing lines for all the important yield related, grain quality traits. The crosses of ULRC 6*7, ULRC 24 and ULRC 29 were found to be best performing crosses for both yield related and grain quality traits.
98.	Combining Ability Studies for Yield and Aluminium Toxicity Tolerance in Maize (Zea mays L.) Hybrids	Mr. Samudra Kalita	Gen. & Plant Breeding	2022	The field evaluation studies indicated that non-additive variance was preponderant and can be exploited for heterosis. When subjected to aluminum stress, a compensatory mechanismearly formation of lateral roots was triggered in all the treated genotypes. In certain hybrid combinations, the response to aluminum stress for the root / shoot parameters were at par with the control.
99.	Phenotypic Diversity Studies and Pigment Characterization in	Ms. Sristishila Baruah	Gen. & Plant Breeding	2022	Presence of considerable variation at both the phenotypic and genotypic level was observed among the eighty-three landrace accessions

	T =		1	1	
	Coloured Maize (Zea			1	studied. Phenotypic studies indicated that for
	mays L.) Landraces				direct selection on the basis of high ear weight
	Adapted to North East				to be fruitful, simultaneous selection of other
	Hill Region (NEHR)				ear/kernel related traits were important.
	of India				Highest anthocyanin content was recorded in
					the accession P/T 1 (1.48 CGE mg/g). Highest
					phlobaphene content was recorded in the
					accession P/MI 5 (1.12 A 510 /g). Population
					III and Population IV were most divergent.
	DISCIDI INE. I	DI ANT MOLECU	I AD BIOLO	CVAN	ID BIOTECHNOLOGY (PMB)
					TERIZATION AND EVALUATION
100	CLASSIFICATION/		IMII LASMI CI		
100.	Crossability studies	Ms. Spurty		2013	Eleven RAPD and 7 SSR primers were
	and characterization	Tripura			selected (out of 14 and 8, respectively) to
	by molecular markers				assess the genetic diversity of 20 accessions
	in rice (Oryza sativa				and 2 rice varieties. A total of 42 RAPD
	L.) accessions				amplicons were generated. The average
	E.) accessions				number of amplification products formed was
					3.84 with a maximum of 7 in OPD-08 and a
					minimum of 2 in OPD-07.
101.	Allele mining and	Ms Bindanchi		2015	Allele mining across <i>Rdd1</i> gene suggested that
	wide-hybridization	T.M. Sangma			allele A (600 bp) can be used in breeding
	approach for	J			programmes to enhance grain length in rice.
	enhancing yield in rice				Allele A (205 bp) of RM 478 and allele B (240
					bp) of RM 574-2 associated with low grain
					weight and grain width, respectively can be
					used for rejection at seedling stage in marker
100	Englandian of material	Martina		2016	assisted breeding programme.
102.	Evaluation of putative	Mr. Limasunep		2016	Genotypes TS38 and M27 are better
	mutant populations in	Longkumer			performers for Al toxicity tolerance.
	rice (Oryza sativa L.)				
	and rapeseed(Brassica				
	rapa syn.				
	campestris)for				
	aluminium toxicity				
	tolerance				
	CI	ASSIFICATION/C	CATEGORY:	MOLEC	CULAR MAPPING
103.	Study of sequence	Ms. Clarissa	PMB	2011	Diverse genotypes from NEHR along with
	polymorphism at	Challam		1	known international cold tolerant lines were
	DREB loci in relation			1	screened for cold tolerance at germination and
	to seedling stage cold				seedling stageand it was found that the
	tolerance in rice			1	cumulative score of 7 parameters was a good
				1	indicator, distinguishing cold tolerant from
					sensitive genotypes and the most contrasting
					genotypes both from Arunachal Pradesh
				1	identified.PCR amplification of the
					1
					OsDREB1A and OsDREB1B across a panel of
				1	15 diverse genotypes revealed presence of 2
10:	X 1) / m 1 ·	D) (5	2012	and 5 SNPs, respectively.
104.	Identification and	Ms. Tshering	PMB	2012	Present study was carried out to find the novel
	cloning of cold	Chomu Bhutia	1	1	genes, to validate the responsiveness in two

	responsive genes in Rice				rice landraces (UR5 and UR 17-2) adapted to low temperature by RT-PCR method and clone the selected genes into an appropriate vector. Out of 10 selected genes, 6 showed amplification when standardized with genomic DNA. RT-PCR experiment showed that at 24 hours stress 2 genes (OsZim and OsFbx257) show differential expression. While at 3 hours 4 genes viz, OsPs, OsFbx257, OsZim and OsPal were differentially regulated. The OsFbx257 gene was successfully cloned. This gene could be evaluated further for its role in plant under low temperature.
105.	Identification and tagging of gene(s)/loci showing differential response to phosphorus deficiency in rice	Mr. FirstbornsonDkh ar	PMB	2013	F ₂ Mapping population involving parents Chakhao Poroiton and Shahsarang was evaluated for Phosphorus deficiency tolerance and 10 informative markers identified.
106.	Association of genic markers for phosphorus deficiency tolerance in rice biparental populations	Ms. SalamgwamlieM ichui	PMB	2015	In a F ₂ rice population, it was observed that the flag leaf dry weight, fresh leaf weight and leaf width were significantly correlated with P uptake, while leaf width was found to be correlated with PUE under lowland acidic field conditions. Four novel gene based polymorphic markers were identified from markers designed targeting ten genes identified from root transcriptome data. The results showed that marker CG 1-2 associates with three phenotypic traits {(tiller number at 60 days after transplanting (DAT)} and at 90 DAT and leaf number), CG-111-3 with one trait (plant height) and CG-113-1 with one trait (leaf area).
107.	Marker assisted pyramiding of drought tolerant QTLs in rice variety SambaMahsuri Sub-1	Ms. DiezelhounoChu chua	PMB	2017	The F ₂ progenies carrying both the "drought tolerant yield" QTLs qDTY 1.1and qDTY 2.2 QTLs (inhomozygous or heterozygous condition) were generated and evaluated under moisture stress for various physiological parameters. As per physiological studies the plants in lines SAB1, SAB2, SAB7 and SAB4 were found to be performing better under moisture stress.
108.	Characterization of a panel of contrasting rice genotypes for low phosphorous tolerance using morphological and molecular markers	Mr. Ebenazar Gympad	PMB	2018	A set of 60 diverse rice genotypes selected from the previous study on 110 genotypes were evaluated for performance with respect to 15 different traits under lowland, acidic P deficient soil conditions using morphophysiological and molecular parameters. Significant correlation of our data with previous field data (2014) for 11

109.	Bulk segregation for blast resistance in F2 population derived from two contrasting rice genotypes of North Eastern hill	Ms. HageSumpi	PMB	2018	agronomic traits suggests that the genotypes and traits identified can be used for various breeding and crop improvement programmes for low P tolerance. The correlation matrix showed that panicle length, leaf area and biological yield were significantly correlated with grain yield. Marker K46-2 showed significant association with panicle length and test weight. Blast resistance genePi20t was found to be associated with resistance to local pathotypes of <i>Magnaporthegrisea</i> (rice blast pathogen).
110.	region Characterization of advanced inbreed lines for low phosphorous and iron toxicity tolerance	Mr. Shaikh Akbar Rasul	PMB	2018	Two advanced breeding lines i.e., 51(BC ₂ F ₉) near isogenic lines (KM lines) and recombinant inbred lines (235 plants; F _{3:4} ; ULRC-36) were evaluated for iron toxicity and low P tolerance under lowland acidic field. Lines like KM-194, KM-608 and KM-660 identified as good performers.
111.	Molecular characterization of selected RILs derived from two low phosphorous tolerant rice genotypes	Ms. T. Oshin Sharma	PMB	2018	In a set of 1600 individuals (F ₅) (recombinant inbred line (RIL)) generated from LR23 (Sahbhagi Dhan; <i>PsTOL1</i> ⁺) X LR26 (Chakhao Poreiton; <i>PsTOL</i> ⁻) was phenotypedchi-square test for goodness of fit revealed that HvssR02-14, RM527, snpOS0303, snpOS0304, snpOS0305, snpOS0306, BADH2 and Chalk5 showed significant values, suggesting preponderance of LR23 allele in markers 02-14 and chalk5 and LR26 allele for other six markers. A sand based screening using Yoshida solution on these 20 lines along with the parents revealed significant differences in control and treatment conditions for all the six traits suggesting that the performing lines were distinct for both phenotypic and genotypic traits and therefore, can be used for further selection of best lines under lowland acidic soil conditions.
	JANUARY 2020-MAY				
112.	Molecular Characterization of Mineral Stress Responsive Rice Genes and Identification of their Putative Orthologs	Ms. Boobana P.	Plant Molecular Biology & Biotechnol ogy	2021	Our data revealed that PHR3 and PHO1 are highly induced in roots after 48 and 24 hrs. of high Fe stress, respectively. The present study gave an insight about the response of the P- and F+ tolerant and P-susceptible genotypes under both low P and high Fe conditions. The tolerant genetypes performed well under both

					stress conditions.
113.	Bulk Segregant	Ms. Akunuru	Plant	2022	The Bulk based on phenotypic data were
113.	Analysis for	Sreeja	Molecular	2022	significantly different and genetyping on a set
	Aluminium Toxicity	Breeja	Biology &		of 76 progeny revealed that 7 markers <i>viz</i>
	Tolerance in $F_{2:3}$		Biotechnol		HvSSR01-34, RM12557, AR051-2, AU01-3,
	Population of Rice		ogy		FR033, PR026-3 and PR062-3 were associated
	1 opulation of Ricc		ogy		with various traits under hydroponic
					conditions. Three markers <i>viz</i> HvSSR01-34,
					AR051-2 and PR062-3 are associated with
					better performance under lowland acidic soil
					conditions.
114.	Molecular	Mr. Jayanta Bora	Plant	2022	Thirty-one advanced breeding lines had both
111.	Characterization of		Molecular		the two blast resistance genes Pi54 and Pita for
	Advanced Breeding		Biology &		the desirable allele, while in four advanced
	Lines of Rice Using		Biotechnol		breeding lines neither of the desired allele was
	Candidate Gene Based		ogy		present. Twenty-three advanced breeding lines
	Markers		2,7		carry the desirable allele were fixed for four
					genes (PsTOL1, OsWD40-2, OsML08 and
					Os02g08018) for low phosphorous tolerance.
115.	In Vitro Regeneration	Mr. Kishor B	Plant	2022	Plant growth regulator combination of BAP
	and Genetic Fidelity		Molecular		and NAA was found to give the best response
	Assessment of Red		Biology &		for shooting with simultaneous rooting. All
	Ginger Lily		Biotechnol		plants regenerated maintained genetic fidelity
	(Hedychium rubrum)"		ogy		as confirmed by using RAPD markers. Field
					performance of the <i>in vitro</i> regenerated plants
					is being evaluated.
116.	Genetic Fidelity	Mr. Paraskar	Plant	2022	TDZ was found as an alternative source to
	Assessment of In Vitro	Shyam	Molecular		BAP and NAA for multiple shooting. IBA was
	Regenerated Sweet	Purushottam	Biology &		found to give the maximum response for in
	Flag (Acorus calamus)		Biotechnol		<i>vitro</i> rooting. The protocol developed in this
	Using Molecular		ogy		study produced true to type plants and
	Markers				maintained genetic fidelity as confirmed by
			117. Ma	<u> </u>	using RAPD markers
		DISCIPLINE GE			IT DDEEDING
	CI ASSIFICATION				TERIZATION AND EVALUATION
118.	Evaluation of maize	Ms. Miranda	GPB	2013	Cluster analysis of the 139 maize landraces
110.	landraces of North-	Sanjenbam		2013	studied revealed that the groping was based on
	Eastern Hill Region of				ear weight variability rather than geographic
	India for genetic				origin.
	diversity and				For NCLB resistance, qualitative disease
	Turcicum blight				assessment under natural field conditions
	resistance				followed by controlled quantitative assessment
					based on Area Under Disease Progress Curve
					scores were consistent for thelandraces studied
					implying genetic basis of inheritance.
119.	Combining ability	Ms.	GPB	2016	Diallel mating studies for tryptophan content
	studies of a set of	Backiyalakshmi			and grain yield under acidic soil conditions
	QPM (Quality Protein	C.			identified QPM lines and crosses which
	Maize) inbred lines				showed promise for developing lines with high

	under acidic soil conditions				tryptophan content and grain yield.
120.	Tryptophan content analysis in F2:3 families of six quality protein Maize crosses	Mr. Pawan Kumar Khati	GPB	2018	Kernel characterization and tryptophan content analysis for identifying useful segregants from F _{2:3} QPMfamilies derived were effective for lines with kernel modification scores of 2-3. Both high and low levels of tryptophan were observed in the segregating generation indicating selection would be effective in the presence of variability for tryptophan content.
121.	Selection for hard endosperm, tryptophan content and yield contribution traits in F3:4 QPM families	Mr. Mariyappan. S. B.	GPB	2018	Study of homozygous QPM lines from F _{3:4} generation families for high tryptophan using SSR markers for <i>o</i> 2 and <i>o</i> 2 modifiers could identify five lines with % tryptophan values ranging from 0.90 to 0.94 identified as distinct from non QPM maize for further line development programme.
122.	Combining ability studies for yield and yield attributing traits in maize (Zea mays L) inbred lines developed from north eastern hill region (NEHR) of India	Mr. Harsha Vardhan Rayudu Jamedar	GPB	2019	Half diallel studies among the inbred lines developed from landraces of NEHR of India for yield and yield attributing traits indicated non-additive gene action for most quantitative traits studied. Ear related traits were highly significantly correlated to grain yield in both red and yellow kernel lines studied.
					TRESS TOLERANCE
123.	Identification of water logging tolerant maize (Zea mays L.) landraces from Northeast India	Mr. KunaljitDebbar ma	GPB	2014	A set of sixty maize landraces collected from different states of North Eastern Hill region screened for water logging tolerance revealed presence of genetic variability among the landraces for critical parameters -shoot to root ratio, ability to form adventitious roots and lysigenousaerenchyma.
124.	Study of aluminium toxicity among maize landraces of North Eastern Hill Region (NEH) of India	Ms. NiraliMoirangth em	GPB	2015	The studies based on hydroponics for root characters and hematoxylin staining revealed that high staining of root tissues was negatively correlated with decreased root lengths. Path Analysis studies of treated plants grown to adult stage suggested that selection criteria for higher yield based on ear weight and total grain weight would be effective for improving yield.
125.	Evaluation of full sib families for aluminium and water logging stress in a set of identified maize (Zea mays L.) landraces	Ms. Baltachina. G. Momin	GPB	2016	Seedlings of second generation full sib maize families screened under hydroponics at highly toxic Aluminium concentrations recorded differential response for shoot dry weight for families with both high and low Net Seminal Root Length. For submergence tolerance, families with higher Water Tolerance Coefficient recorded greater ærenchyma and adventitious roots production.

	CLAS	SIFICATION/CAT	EGORY: BI	OTIC S'	TRESS TOLERANCE
126.	Genetic gain in response to selection for yield contributing traits and Turcicum blight resistance in maize (<i>Zea mays</i> L.) landraces	Ms. Moutushi Sarkar		2015	Directional selection on the basis of cobweight done in ten maize landraces previously identified to be resistant to <i>Turcicum</i> blight disease identified five population showing higher resistance compared to the check line under study. Genetic gain in the progeny population was highest for cob weight.
127.	Characterization of identified maize Inbred lines for resistance to northern corn leaf blight (NCLB)	Mr. ShimreisoVashu m	GPB	2017	A set of 39 maize inbreds consisting of 34 full sib families, 3 QPM lines and two reference checks for NCLB were used for phenotyping and genotyping. The full sib family M9 (4)-39X42 with a very low field (4%) as well as AUDPC score of 3.42scored similarly as the resistant check for markers bmc1152 and umc1149 which tag close to reported <i>Ht2</i> and <i>HtN</i> genes for resistance in bin 8.06. Similarly, sib familiesN25 (5)-2X1, Ma5 (7)-3x5 and S16 (9)-4X8 with AUDPC scores over 40 were comparable with the susceptible check for SSR markers umc 1947 and phi 053.
128.	Generation Mean Analysis for inheritance of Northern Corn Leaf Blight Resistance in maize of North East Hill condition	Ms. ViolinaBharali	GPB	2019	The mode of inheritance and gene action governing NCLB resistance in three different maize populations developed from inbred lines indigenous to North East Hill Region of India revealed that mode of gene action governing resistance to NCLB was population specific. Highly significant mean effects for the resistance parameters studied implied that NCLB inheritance was under polygenic control in all the three populations studied.
129.	Phenotypic and genotypic characterisation in segregating biparental population of maize (Zea mays L.) for Turcicum leaf blight resistance	Mr. Sugumar S.	GPB	2020	A total of twenty seven generations from three bi parental crosses using resistance parameters Area Under Disease Progress Curve, Disease Severity and Incubation Period under artificial epiphytotics studies revealed that disease progression for <i>Turcicum</i> leaf blight in the segregating F ₂ and F ₃ generations was variable in the three crosses studied. Joint Scaling test revealed the presence of non-allelic interactions in Cross 1 and Cross 3 along with a preponderance of dominance gene action as shown by Generation Mean Analysis. A high additive genetic varianceresulting in high narrow sense heritability was also observed for Cross 1.
	I	LEGUMES		1	0.000 1.
		DISCIPLINE GE	NETICS ANI	D PLAN	T BREEDING
	CLASSIFICATION/				TERIZATION AND EVALUATION
130.	Assessment of genetic	Mr.	GPB	2011	Genetic diversity study among 34 pea

	diversity of pea (<i>Pisum</i> sativum L.) using morphological and molecular markers	HandersonChule t			genotypes (Pisum sativum L.) including 7 already adapted varieties of this region, 21 advanced breeding lines and 6 local cultivars was performed using 16 morphological markers and 15 SSR markers. The number of alleles per SSR marker varied from 2 to 5, with an average number of 2.866 alleles per locus. The diverse genotypes revealed from both the dendrograms were IPFD 09-2, HFP-620, Azad P-1, Matek, IPFD 1-10, CAU FP-1, IPFD 09-3, Pant P-136, Rachna, E-6, Matek and LP-3.
131.	Genetic diversity analysis of blackgram [Vigna mungo (L.) Hepper] using morphological and molecular markers	Ms. Artibashisha Hijam Pyngrope	GPB	2012	Genetic diversity study among 30 blackgram genotypes [Vigna mungo (L.) Hepper]was performed using 21 morphological markers and 20 SSR markers. In cluster analysis, the local germplasm grouped separately from the advanced breeding lines and locally adapted varieties. The study also revealed some genetically distinct WBB-1, VBG 09-005 and IPU 10-17.
132.	Assessment of genetic diversity in ricebean (Vigna umbellata) germplasm using morphological and molecular markers	Ms. Yengkhom Sanatombi Devi	GPB	2017	Morpho-molecular evaluation of 120 ricebean accessions identified 7 clusters based on morphology and cG9589C1 as the most informative SSR marker. Chak-hawai-31, BKSB and chak-hawai-1 were identified as the most promising genotypes.
133.	Crossability studies and genetic diversity in black gram using molecular markers	Mr. Puyam Tondonba Singh	GPB	2018	A total of 15 crosses were made with KU-16-33 having the highest pollen fertility. Based on PIC value, primer CEDG118 and CEDG279 were found to be informative. In factorial plot analysis, the first axis explained 18.66% variation.
134.	Characterisation and evaluation of some genotypes of soybean [Glycine max (L.) Merrill] under acidic soil condition in Meghalaya	Linthoingambi	GPB	2019	The maximum yield per plant was recorded in the genotype TS-53 followed by SKF-SPS-11 and MACS-1493. Lowest yielder genotypes were MACS-1575 followed by NRC-130. Genotype CSB-10112 had the highest protein content (45.1%) and genotype NRC-131 was found to have highest oil content (20.1%). Clustering of genotypes for studying genetic diversity was performed by Tocher's method of clustering in D² analysis. In which 4 clusters were formed. Based on hydroponic study under 25 μMaluminium treated solution, the genotype TS 53 was found to have least root length difference from the mean value and so, was recorded as tolerant genotype followed by the genotype JS 335 and MACS 1493. The genotype NRC 130 was found to have more

				1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
					root length difference and was recorded as
					susceptible genotypes and was succeeded by
					the genotype MACS 1575 and NRC 137.
					Under 75 µMaluminium treated solution, the
					result showed genotype TS 53 as tolerant
					genotype followed by the genotype JS-335 and
					MACS-1493 while the most susceptible
					genotype was MACS 1575 followed by NRC
					130 and NRC 129.
	DISCIPLINE: 1	PLANT MOLECU	LAR BIOLO	GY AN	ND BIOTECHNOLOGY (PMB)
					CTERIZATION AND EVALUATION
135.	Crossability and	Mr. Dipen Nama	PMB	2017	Maximum number of fruit set was recorded in
133.	genetic diversity	Adhikari	11,12	2017	VRP-61 x VRP-228 cross. SSRs AA446 and
	studies in Pea (Pisum	7 Idilikui 1			AA473 were found to be most informative.
	sativum)				THE TO WELL TOURS TO BE INTO THAT I'VE.
136.	Hybridization and	Ms.	PMB	2017	A total of 27 polymorphic SSR primers were
	genetic diversity in	TanniRangkham			selected to assess genetic diversity of 36
	Vigna unguiculata (L.)				accessions of cowpea revealed 72 alleles and
	Walp.				two clusters i.e. Cluster I and Cluster II
	, cop				comprising of 14 and 22 accessions,
					respectively.
137.	Studies on crossability	Mr.	PMB	2017	In PCA plot, the first component explained
137.	between various	BipramaniNamei	TIVID	2017	18.56 % variation and the second and third
	accessions and genetic	rakpam			component explained 16.85 % and 12.77 %,
	diversity in cowpea	такратт			respectively among the 36 accessions of
	-				cowpea using 30 RAPD primers. Genotypes
	(Vigna unguiculata				
	(L.) Walp.)				PL-2 (C-27) and CP-7 (C-30) were identified
					as distinct and can be part of future breeding
120	YY 1 11 .1 .1) / D1 1	D) (D	2017	programmes.
138.	Hybridization and	Mr. Dharmendra	PMB	2017	Based on Euclidean distance and dendrogram
	genetic diversity in pea	Singh Lagoriya			two major clusters Cluster I and Cluster II
					comprising of 27 and 13 accessions,
					respectively were revealed. The cultivars
					Makochabi 1 and Debgiriwere identified as
					distinct from the other 38 pea accessions.
139.	Genetic variability	Mr. Balaji S.	PMB	2020	The Faba bean genotypes used in the study
	analysis of Faba bean	-			showed variability among the genotypes.
	(ViciafabaL.)				However, there was little association of genetic
	Genotypes of North				divergence and ecological origin of genotypes.
	East Hill region of			1	Some genotypes were identified having
	India using			1	promising performances in terms of agronomic
	Morphological				traits and can be further utilized for future crop
	Characteristics and				improvement programme.
	SSR markers				
		CLASSIFICATION	V/CATEGO	RY:TISS	SUE CULTURE
140.	Standardisation of in	Ms. Vedulla	PMB	2019	Best rooting medium was BAP 1.0 mg/l with
	vitro regeneration	Usha Tejaswini			IBA 1.0 mg/l. The primers OPG-03 and OPH-
	protocol and genetic	J		1	04 were found to be most informative with
	diversity analysis in				genotypes PANT-U-6 and GP-52-NO-5/31 as
	Blackgram using				the most diverse.
	Diackgrain using			1	the most diverse.

	RAPD markers				
141.	In vitro regeneration and genetic diversity analysis in soybean using SSR markers	Ms. SakuonuoTheun uo	PMB	2019	MS medium containing 2 mg/ml BAP gave 100% response in explants. Single coty-node of CSB 10084 genotype gave the highest number of shoots in MS media augumented with 1.75 mg/l BAP and 1 mg/l KIN. PIC value was the highest for markers Satt571, Satt230 and Satt129.
		SPICES (chill			
	~~ . ~~~~~~ ~ . ~~~	DISCIPLINE GE			
				1	CTERIZATION AND EVALUATION
142.	Study of morphological and genetic variability in ginger accessions of North-East	Mr. Aiarson K. Sangma	GPB	2014	Out of a total of 48 ginger accessions from N.E. India Nadia, WGH1, EGH2, JH4, JH6 and Suruchi were found suitable for higher rhizome yield (>25 t/ha); Varada, Ernad, JH1 and Suprabha were suitable for low fibre content (<4.5%); Khasi local and JH10 were suitable for higher oleoresin content (>7%). Association studies and path analysis revealed that plant height, rhizome thickness and number of fingers per rhizome were good traits for indirect selection for higher rhizome yield by virtue of their higher positive direct effect as well as indirect effects through other traits. These characters also possess higher GCV and heritability values. Twenty seven (27) out of 39 ISSR primers generated sufficient polymorphism to differentiate the 48 accessions at DNA level. Molecular diversity assessed through Nei's similarity coefficient was narrowed except for few genotypes which
	DISCIPI INE. I	DI ANT MOLECU	I AD DIOLO	CT/ AN	were highly divergent (WGH3 and JH11).
					ND BIOTECHNOLOGY (PMB) CTERIZATION AND EVALUATION
143.		Ms. Julia Sunderi Yumnam			Diverse chilli germplasm (thirty-eight in number) collected from different areas of the North-East were evaluated using morphological parameters and 52 SSR primers. A total of 27 markers polymorphic with maximum alleles detected for Hpms116 (7 alleles). Four clusters were observed. It was observed that plants having erect fruits clustered together and so was the case with campanulate fruits. Percentage variation among populations, within individuals of population and within individuals was found to be were 29.43%, 14.62% and 55.95% respectively indicating diversity in the landraces sampled.

	CI	ASSIFICATION/C	CATEGORY:	MOLEC	CULAR MAPPING
144.	Molecular Characterization of King Chilli (Bhutjolokia) and DalleKhursani accessions with reference to pungency related genes	Mr. Lalduhzuala Colney	PMB	2017	Morphological and molecular markers identified distinguishing king chilli from Dale khurasani. The SSR and sequencing data leads supports to morphological evidence that Dallekhursani is a pungent <i>C. annuum</i> .
	1	CLASSIFICATIO	N/CATEGOR	RY:TISS	SUE CULTURE
145.	Micropropagation and DNA fingerprinting of ginger (Zingiberofficinale) genotypes cultivated in Meghalaya	Mr. L. Victor Khonglah	PMB	2011	Out of four genotypes studied for micropropagation only two i.e. Nadia and Ingbah were found to be responsive. The 8 SSR markers used in this study were found to be monomorphic across all the 11 genotypes. 17 RAPD markers produced a total of 93 bands of which 47 were polymorphic (50.5% polymorphism). A total of 12 ISSR markers were found to be most suitable as they were able to differentiate between all genotypes except Jamaica and Khasi local.
146.	Inter-specific hybridization and embryo rescue in Capsicum	Mr. Chandan Debbarma	PMB	2011	In the crossability studies, out of the three species (viz. <i>Capsicum annuum, Capsicum chinense andCapsicum frutescens</i>) crosses with two varieties of <i>Capsicum annuum,</i> viz. PusaJwala and Kashi Anmol, showed success. In <i>in-vitro</i> investigation ofembryo rescue, the optimum timing for explants collection was found to be 27-33 days after pollination (DAP). The highest percentage of embryo growth was observed with the hormone concentration of 0.5 mg 1 ⁻¹ GA ₃ and 0.05 mg 1 ⁻¹ of NAA. Hybridity test was confirmed with morphological markers and RAPD markers like OPV-12 and OPZ-4.
147.	Standardization of regeneration protocol for increasing capsaicin content in Capsicum sp. (Dallekhursani)	Mr. Karma Landup Bhutia	PMB	2015	Micro-propagation of a pungent chilli (DalleKhursani) from Sikkim standardized.
148.	Genetic fidelity assessment of in vitro regenerated King chilli (Capsicum chinensis Jacq.) using molecular markers	Ms. Careen Nongrum	PMB	2018	Out of 20 MS media combinations tested, 12 meia were found to be effective. The maximum number of shoots per explant were observed for MS18 (20 μ M BAP + 10 μ M IAA). Out of 28 selected RAPD markers, 16 gave unique band. Shoot tips, nodes and internodes <i>in vitro</i> regenerated explants showed monomorphism.
149.	Production of virus free quality planting	Ms. Saumika Bhattacharjee	PMB	2019	Cucumber mosaic virus free plants regeneration protocol using meristem tip

150.	material in chilli var. Dallekhursani by in vitro meristem tip culture Evaluation of curcumin content and genetic diversity using molecular marker inturmeric genotypes cultivated in North East India	Ms. Magar Sayali Ganesh	PMB	2019	culture developed for Dallekhursani and confirmed using molecular methods. The protocol can be used for large scale production of pathogen free planting material. Among the 112 treatments checked for regeneration, BAP (3.5 mg/l with NAA (1.5 mg/l) gave the best result. PIC values ranged from 0.497 to 0.222. The curcumin content was the highest in Lachin (8.9%).
		Other	rs		
		DISCIPLINE GE	NETICS AN	D PLAN	T BREEDING
					TERIZATION AND EVALUATION
151.	Genetic divergence study in selected germplasm lines of <i>Mucunapruriens</i> using morphological, biochemical and molecular markers	Ms. BabuhlinKharjan a	GPB	2016	Twenty ISSR and SSR primers when used produced a total of 43 alleles among 11 Mucuna accessions with locus PH9B2 was the most informative marker. Depending on the variability present in the accessions, MPWBN-03 can be selected for higher seed yield and MPWBN-07, MPNGL-41 and IC-83195 can be taken in hybridization programmes for further improvement of the traits.
152.	Assessment of genetic diversity in Job's Tears germplasm using morphological and SSR markers	Ms. Bharati Lap	GPB	2016	Genotypes JTN 11 and IC-89392 were identified as most promising genotypes based on grain yield data. IC-417053 with highest phenol content and high antioxidant content may be used as a parent in future breeding programme. In molecular characterization with SSR primers a total of 62 alleles were generated with an average of 3.87 alleles per locus using 16 microsatellite markers. GBssrJT198 was the most informative marker and two alleles unique to wild accessions only were also obtained.
153.	Hybridization and genetic diversity studies in brinjal	Ms. Pungdila Valentina	GPB	2017	Fruit set was maximum in Jawaharlal Brinjal-8 X Brinjal Rajendra Green as well as in DBR-31 X DRNKV-104 (80 %) where pollen germination was not the highest whereas fruit set was the least (40 %) in Jawaharlal Brinjal-8 X DBR-31 where pollen germination was the highest. Seven RAPD (out of 18) and all 12 SSR primers were selected to assess the genetic diversity of 31 accessions. A total of 35 amplification products were scored in 31 accessions with different primers, out of which 29 were found polymorphic.
154.	Response to selection for yield contributing traits in <i>Brassica</i>	Mr. HiralalDebbarma	GPB	2017	The present investigation was carried out to select superior plants for six yield contributing traits under rainfed, low-input, acidic upland

155.	campestrisunder acidic upland soils Morphological	Ms. Chumki	GPB	2018	soil condition in M27 background. Based on the important yield contributing traits OP1-12-5, OP2-3-1, OP1 -13-5, OP1-6-1 and OP1-14-5 were identified as superior lines. These lines, after further evaluation and multiplication can constitute an improved M27 population, or can be intermated to form a base population for further selection. Data for seven <i>Fragariag</i> enotypes from
	characterization and in vitro regeneration in strawberry (<i>Fragaria</i> sp.)	Dutta			farmers' fields in Ri-bhoi and East Khasi Hills subjected to ANOVA revealed presence of considerable variation for nineteen quantitative traits especiallythose pertaining to fruit characteristics. <i>In vitro</i> regeneration revealed that MS Medium supplemented with 5mg/l BAP + 1mg/l IAA produced the best results both in terms of maximum percentage survival of explants and number of shoots in all the varieties studied.
156.	Evaluation of Citronella (Cymbopogonwinteria nusJowitt.) genotypes for their oil yield and essential oil content under Meghalaya conditions	Mr. Mallikarjun P. K	GPB	2020	The genotypes Bio-13 and Mandakini were registered as high oil yielding and stable for essential oil yield, whereas JC-4 had higher fresh biomass yield and showed better adaptability for most of the traits. Among the four seasons, Pre-kharif, 2019 (S2) was found to be the better season for most of the traits studied and Rabi, 2019-2020 (S4) was desirable from oil quality point of view as it was observed with higher percent concentration of chemical constituents except Citronellal. Genotypes Jalapallavi, JC-2 and JC-4 were desirable for major essential oil constituents as they had high Citronellal, citronellol and geraniol percent, respectively. The molecular characterization of Citronella genotypes with SSR markers produced a total number of 57 alleles. The highest PIC value of 0.69 was recorded for CM007 and lowest value of 0.22 was recorded for CM4142 with an average value of 0.48. The highest similarity was found between the genotypes JC-1, JC-2 and JC-4, while the least similarity was found between genotypes Mandakini and JC-2 as well as between genotypes Bio-13 and JC-1.
157.	Evaluation of Linumusitatissimum genotypes and F1 hybrids under acidic upland conditions of Meghalaya	Ms. Bezil M.	GPB	2020	Breeding lines LMS 2015- 11 and BAU 15- 03 were identified the mostlow Ptolerant, stable and high yielding genotypes under upland conditions of Meghalaya.

	DISCIPLINE: 1	PLANT MOLECU	LAR BIOLO	GY AN	ND BIOTECHNOLOGY (PMB)
					CTERIZATION AND EVALUATION
158.	Screening and characterization of putative mutant population in Brassica for low moisture stress	Ms. Chandrakanthi S	PMB	2016	Reproductive stage low moisture stress screening revealed that M 27 and NRCHB 101 are better performers. Hydroponics screening showed that M 27 had the least amount of MDA suggesting it is more tolerant to low moisture stress. In terms of germination percentage and root length in low moisture conditions during germination, M 27 and TS 38 are good performers.
159.	Studies on hybridization between various accessions and genetic diversity in cucumber (Cucumis sativa)	Ms. ChongdeilhingKi pgen	PMB	2016	Nineteen SSR primers and 10 RAPD primers to assess genetic diversity of 35 accessions of cucumber showed a range of 33 to 100 for Bray-Curtis similarity coefficient with an average value of 65 %. In M-1 X VRCU-03 the highest fruit set (93 %) was recorded which showed 81.32 % pollen germination after 4 hours of pollination. The genotype IIHR-76 was distinct from the rest of the accessions.
		ASSIFICATION/C			
160.	Development of microsatellite markers for Momordicacharanti and assessment of their cross amplification in some related species	Mr. Raghu Santosh Bhagwan	PMB	2013	22 SSR markers were developed out of which 15 showedpolymorphism.
	•	CLASSIFICATIO	N/CATEGOR	Y:TISS	SUE CULTURE
161.	Studies on inter- specific hybridization and embryo rescue in tomato	Mr. Herbert P. Kharkongor	PMB	2012	The cross of <i>S. Iycopersicum</i> with <i>S. pimpinellifolium</i> gave the maximum fruit set followed by the reciprocal cross. Twenty five days after pollination was found to be the optimum stage for rescuing the immature embryos. MS medium supplemented with 1 mg/I GA ₃ , 0.1 mg/I NAA and 0.5 mg/I BAP gave the highest germination percentage of the cultured embryos. Hybridity of the embryo rescued plants was confirmed using RAPD markers viz. OPAB-18 and OPAB-17.
162.	Standardization of in vitro regeneration protocol, crossability and genetic diversity studies in bottle gourd (<i>Lagenariasiceraria</i> (Mol.) Standal.)	Mr. Santhosh B. L.	PMB	2017	Maximum number of roots (5.6) was recorded in cotyledonary explants (MS + BAP @ 2.0 mg/l + IBA @ 2.0mg/l). Based on 16 polymorphic SSRs, Euclidean distance matrix index analysis revealed that the lowest distance coefficient (0) was found between GH – 37 and GH – 28, whereas GH – 35 and GH – 31 showed the highest (4.12).
163.	In vitro regeneration and genetic variation	Ms. FlamiaChimachi	PMB	2018	Invitro regeneration protocol on 10 banana genotypes suggested use of MS11 and MS5

analysis using	R. Marak	combination as the best combinations. The
molecular markers in		Euclidean distance was the highest between
selected banana		Champa and Atigola.
cultivars of Meghalaya		

MASTER"S THESES in HORTICULTURE

Sl. No.	Title of the thesis	Name of the student	Major discipli	Year of	Outcome
			ne	passin g	
164.	Off season production of strawberry: effect of low tunnel and planting time	Ms. AgreesiaSyndor	Horticul ture (Hort)	2009	Low tunnel structures and planting time had a positive effect on the plant growth, fruiting and extension of fruit period, yield and quality. Fruit bearing is 30-35 days earlier than the normal period when planted in 50% shade during the month of July or August and the fruit availability can extend up to 47 days when planted during the month of November under UVS polythene tunnel.
165.	Impact of planting time and phosphorous dosage on the productivity of dolichos bean (Lablab purpureus I.) Cv Rcdl-10	Ms. BanyllaKharba mon	HORT	2011	For Dolichos bean (<i>Lablab purpureus</i> 1.) Cv. Rcdl-10, as compared with late sowing, early sowing in the months of May and June resulted in higher yield and yield attributes, even with low levels of phosphorus applied. Fertilization with phosphorus dose of 60kg/ha produced better results, as compared to the lower phosphorus doses in all aspect.
166.	Standardization of plant growth promoting substances and grafting techniques for raisinhSohiong (Prunus nepalensis L.) seedling	Mr. BasuLangpokla kpam	HORT	2011	All pre-sowing seed treatments significantly influenced seed germination and subsequent seedling growth and development process in <i>Prunus</i> with GA ₃ @ 75 ppm proving to be the best in overall germination behavior. Tongue grafting proved to be the better technique of propagation with respect to days to first sprouting, graft success, sprouting duration, subsequent plant growth characteristics and final survival percentage.
167.	Physico-chemical properties of Assam lemon (Citrus limonBurm.) at different stages of fruit growth, development and storage	Mr.Callisthenic s Mukhim	HORT	2010	Fruits harvested at 120 to 130 days after fruit set (DAF) developed acceptable physico-chemical qualities with optimum fruit weight (109.28-112.95 g), juice content (37.68-41.23 %), titratable acidity (4.18-4.35%), TSS (≤6.3 ⁰ Brix) and TSS: acidity (≤1.51), and these may be considered as the most reliable maturity indices for taking harvest decision of Assam lemon fruit. The packaging of fruits in perforated (2

					pin hole) PP had distinct advantages over control and other packaging materials in respect of shelf life extension besides retention of other quality and nutritional value of the fruits.
168.	Yield and antioxidant dynamics in Broccoli (Brassica oleracea var. italic) under different nutrient management regimes	Mr. Lalhminsanga	HORT	2010	Combined application of 50% NPK + 50% Vermicompost + FYM produced the highest broccoli yield (174.45 q ha ⁻¹). The highest ascorbic acid, β carotene and total phenol content of head were observed in the treatment combination of organic, inorganic fertilizers and biofertilizers.
169.	Estimation of genetic variability and its implications in improvement of tomato (Lycopersiconesculent umMill.)	Mr. Rajendra Prasad Thapa	HORT	2009	The path coefficient studies on thirty genotypes of tomato revealed that average fruit weight, number of fruits per plant, β - carotene, pericarp thickness, number of locules per fruit, flowers per cluster and number of primary branches per plant exhibited direct effect on yield per plant. Among nineteen characters in thirty genotypes average fruit weight contributed maximum per cent towards genetic divergence followed by juice content.
170.	Physico-chemical changes of Sohshang (<i>Elaenuslatifolia</i> L.) at different stages of maturity and storage	Ms. Rikadakini Lamare	HORT	2009	Fruits harvested at 75 to 80 days after fruit set (DAF) developed acceptable physico-chemical qualities with good colour, flavour and texture. Packaging of fruits in non perforated PP had distinct advantages over control and other packaging materials in respect of shelf life extension besides preservation of quality and nutritional value of the fruits.
171.	Changes in antioxidant phytochemicals of turmeric at different stages of harvesting	Mr. Sanyang Sangma	HORT	2010	The highest yield per plant was recorded in the variety Megha Turmeric (692.67 g), the highest harvest index (95.30 %) and moisture content (92.70 %) was recorded from the variety Narendra Haldi while the variety Alleppy Supreme recorded highest (11.80 %) curcumin content. The maximum curing percentage (23.20 %) was observed in Kedaram and the maximum ascorbic acid content (57.87 mg/l00g) was recorded from the variety Kasturi Tanaka and β carotene content was highest (4332.70 mg/l00g) in the variety Kedaram.
172.	Crop regulation and quality improvement of peach	Mr. Sarangthem Binoi Meitei	HORT	2011	For crop regulation and quality improvement of peach cv. Flordasun hand thinning 70 %, ethrel @ 150 ppm and thiourea 5% and LFR of 30:1 were most effective. Among the hand thinning treatments, 70 % thinning at FB was the most effective where maturity was advanced by 5-6

	rat su ph hig thi im of	ys, improved fruit size, weight, pulp to stone tio, TSS, titratable acidity, ascorbic acid, total gars, fruit colour, total anthocyanins and total tenols. Chemical thinners too, when applied at gher concentration (Ethrel @ 150 ppm) and iourea @ 5% AFS reduced the crop load and aproved the physico-chemical characteristics fruits. However, all the treatments gnificantly reduced total yield.
--	---	---

SCHOOL OF CROP PROTECTION

	M.Sc. Crop Protection (Entomology)									
Sl.	Title of the Thesis	Name of the	Major	Year of	Outcome (2-3 lines)					
No.		student	subject	completi						
				on						
DISC	DISCIPLINE: CROP PROTECTION									
CLASSIFICATION/ CATEGORY: ENTOMOLOGY										
173.	Eco-biology and management of citrus leaf miner, Phyllocnistis citrella (Stainton) in Meghalaya.	Mr. Shembha Syngkon	Entomolo	2009	 Citrus Leaf miner, <i>Phyllocnistis</i> citrella life cycle ranged from 11-36 days with an average of 20.50 days with highest infestation in the third week of February. Among the insecticides evaluated, Imidacloprid (0.05%) was found most effective against this pest on Citrus. 					
174.	Studies on the Biology of <i>Callosobruchus chinensis</i> (Linnaeus) on different pulses and its management at medium altitude hills of Meghalaya.	Mr. Jash Paul Debbarma	-do-	2010	 Pulse beetle, <i>Callosobruchus chinensis</i> was recorded as most serious pest in stored pulses. Among different botanicals tested against the pest, neem leaf powder @ 50 g/kg seed followed by neem oil @ 10 ml/kg were found most effective. 					
175.	Insect Pest Complex of okra and their management at medium altitude hills in Meghalaya.	Mr. Kitdorlang Kharpran	-do-	2010	 Among the insect pests recorded on Okra, Blister beetle, <i>Mylabris postulate</i> was recorded as major pest. Among the insecticides tested, Imidacloprid (0.004%) was found most effective in controlling the major pest. 					

176.	Population dynamics of lepidopteran pests in Cabbage and bioefficacy of eco-friendly insecticides against <i>Pieris brassicae</i> (L.).	W. Rangad	-do-	2010	 Among the insect pests, recorded on Cabbage, Cabbage butterfly, <i>Pieris brassicae</i> was recorded as a major pest. Among the insecticides evaluated, botanicals and microbial insecticides, Endosulfan, Annonin and <i>Beuveria bassiana</i> were found most effective in controlling the pest, respectively.
177.	Insect pest complex of brinjal and management of Leucinodes orbonalis at mid hills of Meghalaya.	Ms. Pukhram Bhumita	-do-	2010	 Among ten insect pests recorded on brinjal, shoot and fruit borer was observed as the major pest. Among the insecticides evaluated against the shoot and fruit borer, Pheromone trap (Luci lure) @ 100 traps/ha followed by spray of Endosufan @ 0.07% were found most effective in reducing the pest population.
178.	Study on fruit flies of mid altitude hills of Meghalaya.	Ms. Bakordalin Chyne	-do-	2010	 Among the fruit flies recorded, Bactrocera tau was the most common pest on cucurbits and B. dorsalis on fruit crops. The total life cycle of B. tau ranged from 30-40 days which could be controlled by parapheromone viz. Methyl eugenol.
179.	Seasonal incidence of mustard aphid, Lipaphis erysimi (Kaltembach) and associated natural enemies on mustard crop.	Ms. Karma Doma Bhutia	-do-	2011	 Mustard aphid, <i>Lipaphis erysimi</i> had highest incidence during last week of December and disappeared in 2nd week of February. Among the natural enemies, Lady bird beetle, <i>Coccinella septumpunctata</i> was observed very potential predator consuming highest number of aphids.
180.	Studies on biology of maize weevil, Sitophilus zeamais (Mostch.) and its	Ms. Rumki Heloise Ch. Sangma	-do-	2011	• Maize weevil, Sitophilus zeamais completed life cycle in 38-45 days with a mean of 40 days in stored maize grains.

	ecofriendly management in mid altitude hills of Meghalaya.				• Among the botanical leaf powders and botanical oils, neem oil @ 3.0 ml/kg grain was found most effective in controlling the pest under storage conditions.
181.	Biological attributes of Cabbage butterfly, <i>Pieris brassicae</i> (L.) and its natural in midaltitudes of Meghalaya.	Mr. Damitre Lytan	-do-	2012	 It was recorded that the most important attribute of Cabbage butter fly, <i>Pieris brassicae</i> was to lay eggs under lower surface for both oviposition and pupation to avoid predation by its natural enemies. Among the natural enemies, larval pupal parasitoids <i>H. ebninus</i> was recorded as the major natural enemy in suppressing the pest population.
182.	Studies on seasonal activity and management of white grubs on Groundnut.	Ms. Devina Seram	-do-	2012	 The seasonal activity of adult white grub, Leucopholis coneophora was observed maximum during the last week of July to first week of September. Among the management practices viz., seed treatment with Imidacloprid @ 3.0 ml/kg followed by soil drenching with Chlorpyriphos @ 4.0 l/ha were found most effective in controlling the pest in groundnut.
183.	Ecological aspects related to biological control of cabbage butterfly, <i>Pieris brassicae</i> (L.) (Lepidoptera: Pieridae) in Meghalaya.	Ms. Meena Debbarma	-do-	2012	• Among the natural enemies of cabbage butterfly, Ichneumonid wasp <i>Hyposoter ebeninus</i> was recorded as predominant parasite which could be used for its successful management.
184.	Insect pest complex and eco-friendly management of major insect pests of maize at medium altitude hills of Meghalaya.	Mr. Deebune Shilla Lamare	-do-	2012	 Among the insect pest recorded on maize, stem borer, <i>Chilo partellus</i> was observed as a major pest. Among the insecticide evaluated against stem borer, Imidacloprid @ 0.25 ml/l was found most effective in controlling the pest.

185.	Eco-biology of tomato fruit borer, Helicoverpa armigera (Hubner) and its management.	Nonglait	-do-	2012	 The life cycle of tomato fruit borer, Helicoverpa armigera was recorded 42-61 days on artificial diet whereas it was higher on natural diet with 42-66 days. Among the insecticides evaluated endosulfan @ 0.07% was found most effective in controlling the pest.
186.	Insect pests complex of soybean and their eco- friendly management in mid hills of Meghalaya.	Mr. CNJS Arangba Mangang	-do-	2012	 A total of six insect pest species of which, stem fly, <i>Ophiomyia phaseoli</i> was recorded as major pest on Soybean crop with highest infestation of 50.60% in first week of August. Among the synthetic insecticides evaluated endosulfan @ 2.0 ml/l was found most effective in controlling the major pest.
187.	Effects of different pesticides on Major Parasitoids of Cabbage Butterfly, Pieris brassicae (L.).	Mr. Deimonlangki P. Thubru	-do-	2013	• It was observed that among the four conventional insecticides evaluated against parasitoids of Cabbage Butterfly, <i>Pieris brassicae</i> , deltamethrin was found most deleterious and <i>Bt var</i> . <i>K</i> was found safest.
188.	Population Dynamics and Management of Mustard Aphid (<i>Lipaphis erysimi</i> Kaltenbach) in Meghalaya.	· ·	-do-	2013	 Mustard Aphid, <i>Lipaphis erysimi</i> population was recorded highest during the 12th week after sowing i.e. 3rd week of January. Among the nine insecticides evaluated against the mustard aphid, Profenofos @ 5.0 ml/l was found most effective in controlling the pest.
189.	Studies on Biology and in <i>Vitro</i> Efficacy of Pesticides against Diamonback Moth, <i>Plutella xylostella</i> (L.).		-do-	2013	 The biology of Diamond back Moth, <i>Plutella xylostella</i> studied on different cruciferous crops revealed that the total developmental period was longest on Cabbage (20.2±0.66 days) and shortest on Brocolli (13.0±0.45 days). Toxicological studies showed that

190.	Biology and Control of Tomato Leaf Miner (<i>Liriomyza trifolii</i>) in Meghalaya.	Ms. Supriya Okram	-do-	2013	 botanical (Anosom) was most effective at LC₅₀ of 0.1 ppm against pest. The life cycle of Tomato leaf miner, <i>Liriomyza trifolii</i> ranged from 13-23 days. Evaluation of different insecticides indicated Phosphamidon 22.44% as most effective against the pest.
191.	Studies on pest complex and efficacy of botanicals against major pest of oyster mushroom in Meghalaya.	Ms. Badarikynti Nongkynrih	-do-	2014	 Among the nine insect pests recorded on Oyster mushroom, Sciarid fly, <i>Bradysia</i> spp. and the fungus beetle, <i>Triplax</i> spp. were found major pests. Among the biopesticides and botanicals evaluated, ethanol extracts of <i>Zanthoxylum armatum</i> was found most effective against the major pests.
192.	Insect pest complex of ginger in Meghalaya and their eco-friendly management.		-do-	2014	 Among the seven insect pest recorded on ginger, rhizome weevil and shoot borer were recorded as major pests. Among the eco friendly pesticides evaluated, rhizome treatment with Imidacloprid + Ridomil MZ followed by application of <i>Metarrhizium anisopliae</i> (2x10⁶ cfu/ml) were found most effective against the major pests.
193.	Genetics of Indoxacarb resistance in <i>Plutella xylostelia</i> (Diamond back moth).	Mr. Romeo M. Marak	-do-	2014	 Studies on resistance to Diamond back moth, <i>Plutella xylostelia</i> showed that Indoxacarb is autosomal and is inherited as semi dominant trait which could increase the rate of resistance in DBM. Therefore some lethal doses and frequent use of Indoxacarb should be avoided for control of DBM.
194.	Evaluation of different artificial diets for laboratory rearing of	Mr. Vinayak B. Doddamani	-do-	2014	Of 21 artificial diets evaluated for rearing predatory lady bird beetle, Coccinella septempunctata, cat food

	Coccinella				based artificial diet was found the
	septempunctata L.				best for rearing the predator
	(Coleoptera:				cest for realing the predator
	Coccinellidae).				
195.	Molecular	Ms. Arpana	-do-	2015	Diagnostic keys were developed for
175.	Characterization of	Manger	- u o-	2013	10 species of <i>Bactrocera</i> which
	Fruit Fly Species of the	wanger			would be useful for their
	Genus Bactrocera in				identification.
	Mid Altitudes of				
	Meghalaya.				Sequence length polymorphisms detected at ITS I and micro satellite
	Wieghalaya.				loci would be used for the
					development of PCR based molecular
106	Chudias an Dialogical	Ma Nana	d a	2015	diagnostic markers.
196.	Studies on Biological and Ecological	Ms. Nang Sena	-do-	2015	• Of three groups of potential natural
					enemies of mustard aphid,
	Attributes of Major Natural Enemies of	Manpoong			Coccinellids i.e. Lady bird beetle,
					Coccinella septumpunctatta was
	1 '				found most dominant natural enemy
	Lipaphis erysimi (Kalt.)				of this pest.
197.	Study on Diversity of	Mr. Ripan	-do-	2015	A many that discounting of malling to me
197.	Pollinators in	Debbarma	-uo-	2013	• Among the diversity of pollinators
	Cucurbits and	Debbaillia			India Honey bee <i>Apis cerena indica</i>
	Pollination Biology of				was found most efficient pollinator
	Honey Bee in Chow-				on Chow-Chow, bottle gourd and
	Chow (Sechium edule)				pumpkin.
	at Mid-Hills of				• It is recommended that honey bee
	Meghalaya.				hives may be installed in the Chow-
	Wieghalaya.				Chow fields so as to increase the
100	D 1 C DNA	M D	1	2015	yield as well as the honey production.
198.	Development of DNA		-do-	2015	• A total of 29 insect species (Pest +
	Barcodes for Major	Lalrinfeli			Natural enemies) were documented in
	Insect Pests and				Cole crop ecosystem.
	Natural Enemies of				• All the 29 DNA barcodes were
	Cole Crops Ecosystem in Mid-Altitude of				developed for all the insect species.
	in Mid-Altitude of Meghalaya.				
199.	Studies on Biology and	Ms. V.	-do-	2015	• Studies on preferential crop host, i.e.
	In Vitro Efficacy of	Lalnunpuii			cabbage, cauliflower and knol khol of
	Different Pesticides				Tobacoo caterpillar, <i>Spodoptera</i>
	against Major				litura and Cabbage butterfly, Peris
L	1 - 3				<i>y</i> ,

	Lepidopteran Pests of				brassicae showed that these pests
	Cole Crops.				 have longer developmental period on cabbage than other two crops. Bio efficacy studies against these pests showed that, Spinosad 45% was most effective in controlling these
200.	Development of DNA Barcodes of Insect Pests and Natural Enemies of Major Cereal Crops in Mid Hills of Meghalaya.	Mr. Khrieketou Kuotsu	-do-	2016	 A comprehensive molecular data was developed for a total of 30 insect species infesting rice and maize. This data could be used as a diagnostic guide at both morphological and molecular level which will be helpful in developing pest management strategies.
201.	Eco-friendly Management of Major Insect Pest of Tomato in Mid-Hills of Meghalaya.	Ms. K. Lalruatsangi	-do-	2016	• Among the chemical insecticides, microbials and botanicals, Flubendiamide, Azadirachtin and <i>Bacillus thurengenisis</i> were found most effective in controlling the major pest of tomato, respectively.
202.	Ecological Aspects and Management of Fruit Infesting Tephritids in Guava (Psidium guajava L.).		-do-	2016	• Ecological studies of fruit flies, Betrocera dorsalis could be managed by topical sprays of neem oil and soil incorporation of entomopathogenic fungus Metarrhizium anisopliae.
203.	Pollination Biology of Honey Bee in Chow-chow (Sechium edule Jacquez) and its Impact on Yield at Mid Hills of Meghalaya.	Mr. Remiioo Newyear Bamon	-do-	2016	 Studies on pollination biology showed that Indian honey bee is a predominant pollinator of Chowchow with highest foraging in the month of August. The effect of pollination of Indian honey bee showed increase in yield of 15.48 kg/plant as compared to 12.3 kg/plant in non pollinated plants.
204.	Seasonal Incidence and Bio-rational Management of Shoot and Fruit borer (Leucinodes orbonalis	Mr. Ajit Tripura	-do-	2016	• Seasonal incidence studies of Brinjal Shoot and Fruit borer showed that the severity of damage could be avoided by planting the crop in the month of April.

of Zanthoxylum armatum showed that respond to the competent of the competent of Meghalaya. Against Major lepidopteran Defoliators of Vegetables. Of Vegetables. Mis. Lency Coccinellids of Cowpea Ecosystem in Mid Hills of Meghalaya. Mis. Lency Dhamala Mis. Lency Coccinellids Of Meghalaya. Mis. Lency Coccinellids Of Cowpea Ecosystem in Mid Hills Of Meghalaya. Mis. Lency Coccinellids Of Competent of Meghalaya. Mis. Lency Coccinellids Of Coccinellids Of Meghalaya. Mis. Lency Coccinellids Of Coccinellids Of Coccinellids Of Meghalaya. Mid Hills Of Mid Hills Of Meghalaya. Aphidoxacarb was found most effective Mexican Hills Aphis crassivora.	205.	Guenee) of Brinjal in Mid-Hills of Meghalaya. Screening of Germplasms and Evaluation of Botanicals Against Mustard Aphid, Lipaphis erysimi (Kaltenbach) in Mustard in Mid Hills of Meghalaya.	Debnath	-do-	2016	 Among the insecticides evaluated, Chlorantraniliprole was found most effective in controlling the pest in brinjal ecosystem. Out of twenty germplasms of Mustard, eight were found highly susceptible and rests were found moderately susceptible. Among the botanicals tested, <i>Melia azedarach</i> was found most effective in controlling Mustard Aphid, <i>Lipaphis erysimi</i>.
Aphidophagous Coccinellids Cowpea Ecosystem in Mid Hills of Meghalaya. Tangu Coccinellids, Coccinellids, Septumpunctata, C. transversalis and Chilomenes sexmaculatus were found dominant predators of Cowpet Aphids, Aphis crassivora. 208. Studies on Bio- Efficacy, Persistency Aphids, Aphis crassivora Tangu Coccinellids, Septumpunctata, C. transversalis and Chilomenes sexmaculatus were found dominant predators of Cowpet Aphids, Aphis crassivora. 109. Among the insecticides evaluated Indoxacarb was found most effective	206.	armatumExtractAgainstMajorlepidopteranDefoliatorsof		-do-	2017	The extract will be useful in management of major pests of vegetables under organic farming as well as in insecticide management
Efficacy, Persistency Dhamala Indoxacarb was found most effective	207.	Aphidophagous Coccinellids of Cowpea Ecosystem in Mid Hills of	<u> </u>	-do-	2017	septumpunctata, C. transversalis and Chilomenes sexmaculatus were found dominant predators of Cowpea
Toxicity of Chlorfenapyr and Indoxacarb in Brinjal and Cabbage. Toxicity of Chlorfenapyr and Indoxacarb in Brinjal and Cabbage. • Studies on dissipation and non target insects revealed that Indoxacarb was least persistent and safe to naturate enemies.	208.	Efficacy, Persistency and Non-Target Toxicity of Chlorfenapyr and Indoxacarb in Brinjal and Cabbage.		-do-	2017	• Studies on dissipation and non target insects revealed that Indoxacarb was least persistent and safe to natural
	209.	=		-do-	2017	• A total of 52 insect species were recorded in Solanaceous crop

	Insect Pests and	Е			ecosystem.
	Natural Enemies of Solanaceous Crops Ecosystem in Mid Hills of Meghalaya.				• A comprehensive molecular data was developed which could be used as a diagnostic guide at both morphological and molecular level which will help in developing pest management strategies.
210.	Studies on major Soil Borne Insect Pest and Parasitic Nematodes Affecting Potato Crop and Their Management.	Sh. Along Bryan M. Sangma	-do-	2017	 Among the soil insect pests recorded, white grubs and cutworms were found major pests in potato ecosystem. Plant parasitic nematodes were also recorded in potato ecosystem which could be managed by using <i>Crotalaria</i> as cover crop to control the nematode pest.
211.	Development of DNA Barcodes for Major Insect Pests and Natural Enemies of Cucurbitaceous Crops in Mid Hills of Meghalaya.	Ms. Arensungla Pongen	-do-	2018	 DNA barcodes generated for 33 insect species in cucurbitaceous crop ecosystem. Of which 23 insect species were established up to species level and 10 upto genus level. Reported 3 species viz., Maculus sp., Paridea sp. and Coridius sp. were established for the first time.
212.	Bioefficacy and Dissipation of Imidacloprid and Thiacloprid in/on Chilli (Capsicum annuum L.).	Ms. Baiamon Sutnga	-do-	2018	 Among the six insecticides evaluated against sucking insect pest of Chilli, Imidacloprid @ 50g a.i./ha was found most effective in controlling the pest. Dissipation studies of the insecticides revealed that the waiting period of Imidacloprid was 4.2 days which is safe for consumption of chillies.
213.	Assessment of Toxicity of Bio-pesticides to the Indian Honey Bee, <i>Apis cerana indica</i> (Fabricius) in Oilseed Brassica.	Mr. Challa Girish Kumar	-do-	2018	 Biopesticides viz., azadirachtin, annonin, Bt var kurstaki, Beauveria bassiana, N. rileyi were found to be safe for foraging bees except spinosad. N. rileyi was found to be selective and absolutely harmless to the foraging bees.

214.	Effect of Plant Extracts and Essential Oils on Major Lepidopteran Pests of Cruciferous Crops.	Ms. Pebam Inija Devi	-do-	2018	 Among plant extracts tested, n-hexane fraction of Vitex negundo was most effective against Spodoptera litura, Pieris brassicae and Plutella xylostella Among essential oil, Ocimum basilicum was found most effective.
215.	Studies on Various Histological Changes in Haemocytes Associated with NPV Infection in Helicoverpa armigera Hübner).	Mr. Yengkhom Suraj Singh.	-do-	2018	 Dietary effect on <i>Helicoverpa</i> armigera biology revealed that chickpea based diet showed highest fitness index followed by pea. DHC showed six identified cells and four unidentified cells whereas, THC showed effects of NPV are more in younger than older larvae.
216.	Effect of Different Temperatures and Plant Oils on Bruchid, Callosobruchus maculatus (Fab.) and Curculionid, Sitophilus zeamais (Mots.).	Ms. Balguri Lavanya Sravani	-do-	2018	 Among eight plant oils tested, rosemary and peppermint oil exhibited highest percent adult mortality of <i>Callosobruchus maculatus</i> and <i>Sitophilus zeamais</i>. Increase in temperature caused higher build up and greater population dynamics in stored grain pests.
217.	Insect Biodiversity and Seasonal Incidence of Major Insect Pests of Apple (Malus sylvestris Mill.) in Mid Hills of Meghalaya.		-do-	2019	 Seasonal incidence studies showed presence of five insect pests <i>viz.</i>, green apple aphid, pale tussock moth, tussock moth, giant looper and cocoa tussock moth attacking apple plantation. Mean population of green apple aphid, pale tussock moth and cocoa tussock moth was significantly correlated with maximum and minimum temperature.
218.	Investigation on Role of Insect and Nematode Pests for Decline of Khasi Mandarin in East and West Khasi Hills	Mr. Krishna Kumar. S.	-do-	2019	 Citrus leaf minor and mite attacks were recorded all the year round. Five plant parasitic nematodes were recorded in Khasi mandarin among them, <i>Xiphinema</i> and <i>Tylenchulus</i> was the most common.

	Districts of Meghalaya.				
219.	Insect Biodiversity and Seasonal Abundance of Major Insect Pests of Black Gram (Vigna mungo L. Hepper) Ecosystem in Mid-Hills of Meghalaya.	Mr. Penumajji Ganesh Kumar	-do-	2019	 Recoded 95 insect species belonging to 13 insect orders and 51 families in black gram ecosystem Bean stemfly, spotted pod borer and bean aphid were recorded as key pests in black gram ecosystem.
220.	Arthropod Diversity in Rice Ecosystem with Special Reference to Spiders in Mid-hills of Meghalaya.	Ms. Sonali Nakambam	-do-	2019	 A total of 1640 arthropod species belonging to 2 classes viz., Arachnida and Insecta were recorded in rice ecosystem. Spider Lycosa sp. Was recorded the most abundant species while Oxyopes bharatae and Pardosa sumatrana were found in all the growth stages of rice crop.
221.	Insect Biodiversity and Seasonal Incidence of Major Insect Pests in Wheat (Triticum aestivum L.) Ecosystem in Mid-hills of Meghalaya.	Mr. Wankitkupar Fernando Nadon	-do-	2019	 Among the insect pest, wheat aphid, Rhopalosiphum padi and Sitobion avenae was found to be major pest throughout the cropping season Correlation analysis showed significant difference with minimum temperature and RH with Rhopalosiphum padi and Sitobion avenae multiplication.
222.	Arthropod Diversity in Agricultural, Horticultural and Silvicultural Ecosystems with Special Reference to Spiders in Mid-Hills of Meghalaya.	Gogoi	-do-	2020	 A total 4023 arthropods were collected from silvicultural, horticultural and agricultural ecosystem, of which 727 Nos. of hexapod and 3296 Nos. of arachnids. Beta diversity indicated that the maximum richness was found in Silvicultural ecosystem followed by horticultural, rice, maize and potato ecosystem.
223.	Studies on Population Dynamics and Monitoring Insect Pests in Potato Agro-	Mr. Nitin Hugar	-do-	2020	• Five insects' viz., Myzus persicae, Empoasca fabae, Bemisia tabaci, Henosepilachna vigintioctopunctata and Thysanoplusia orichalcea were

	Ecosystem Through Different Pheromone				found as major pests exhibiting peak infestation on potato crop.
	Traps and Lures in the				• The activity of insects was positively
	State of Meghalaya.				correlated with maximum and
					minimum temperature.
224.	Study on Biodiversity of Soil Arthopods in Mid-Hills of Meghalaya.	Gadaily	-do-	2020	 Biodiversity indices depicted that there was no significant difference in species richness and evenness in both ecosystems (Horticulture & Agriculture). Soil arthropod showed positive correlation with both maximum and minimum temperature in horticultural ecosystem. Whereas, in agricultural ecosystem, positive correlation was recorded with maximum temperature.
225.	Diversity and Morphometric Study of Termites in Mid-hills of Meghalaya.	Mr. Harish R.	-do-	2020	 A total of 10 species were identified of which 3 new species viz., Odontotermes parvidens, Odontotermes hainanensis and Pseudocapritermes tikaderi were recorded from Meghalaya. Genus Odontotermes was the most diverse genus with maximum number of species. Odontotermes parvidens showed maximum damage in both forest ecosystem and horticultural ecosystem; Microtermes obesi showed maximum damage in maize ecosystem
226.	Spatial and Temporal	Mr. T.	-do-	2020	• A total of 3 species of stingless bees
	Distribution of	Narendrakum			were collected viz., Tetragonula sp.,
	Stingless bees in Mid	ar			Tetragonula sp. & Lepidotrigona
	Hills of Meghalaya.				arcifera of which Genus Tetragonula was the most diverse system.
					• Species richness was observed
					maximum in the month of September
					and minimum in December.
227.	Dietary influence on	Mr. Karthik.	-do-	2020	Lab experiment conducted with four

	the biology and susceptibility of fall armyworm, Spodoptera frugiperda (J.E. Smith) to Cry toxins from Bacillus thuringiensis.	R			 artificial diets viz., Beans, Soya meal, Potato and Corn; bean (0.9525) and corn (0.8789) based diets showed better results by having good fitness index, as compared to Soya meal (0.6575) and Potato (0.48109) based diets. Bioassay with cry toxins showed high mortality rate (based on LC₅₀) in Cry1Ab as compared to Cry1Ac A new parasitoid, Cotesia rufricus on fall armyworm, Spodoptera frugiperda was identified for the first time from the region.
228.	Biodiversity and Molecular Characterization of Insect Pests and natural Enemies of Potato ecosystem in Mid-Hills of Meghalaya.	Ms. A. Mounika	-do-	2020	 A total of 48 insect species and one non insect (31 insect pests; 14 Natural Enemies and 4 visitors) were recorded in potato ecosystem. Comprehensive molecular data were generated for 26 insect pests.
229.	Diversity and Abundance of Fruit Fly Species by Adoption of Parapheromonic Traps in Ri-Bhoi District of Meghalaya	Ms. Sunita Chetry	Entomolo gy	2022	A total of 11 species belonging to 3 genera of tephritid fruit flies were recorded from the study area viz. Bactrocera, Dacus and Zeugodacus. The most dominant genus absorb was Bactrocera. • Two species were recorded for the first time in Meghalaya of which one is a new record of the country.
230.	Biointensive Management of Pest Complex of Brinjal, Solanum melongena L. in Organic Environment	Ms. Sushruta Boruah	Entomolo gy	2022	A total of fifteen species of insect pests were recorded in brinjal during experimentation. The Brinjal shoot and fruit borer (BSFB) was found to be the major pest (22.40% shoot infestation; 38.84% fruit infestation). • Among the natural enemies, three species of predatory spiders and six species of lady bird beetles were found.

		M.Sc.	(PLANT	PATHOL	OGY)					
Sl. No.	Title of the Thesis	Name of the student	Major subject	Year of comple tion	Outcome (2-3 lines)					
DISCI	DISCIPLINE: CROP PROTECTION									
CLAS	SIFICATION/ CATE	GORY: PLAN	T PATHO	DLOGY						
231.	Eco-friendly management of late blight (Phytophthora infestans, (Mont.) de Bary) of tomato in mid-hill conditions of Meghalaya.	Ms. Mariana Dkhar	Plant Patholo gy	2009	• The new organic formulation MATW-2 (native botanical consisting, Asafoetida, Turmeric and Water) was found effective against late blight of tomato (<i>Phytophthora infestans</i>).					
232.	Survey and management of Post harvest diseases of Khasi Mandarin (Citrus reticulate Blanco) in Meghalaya.	Mr. Kamalendra Barman	-do-	2010	 Penicillium brevicompactum was identified as one of the important fungi to be associated with post harvest disease of Khasi mandarin. The water extract of Holy basil was found to be the most effective amongst the botanicals tested for controlling Penicillium brevicompactum. 					
233.	Etiology and management of pod blight complex of soybean in Meghalaya.	Mr. Tilling Tabyo	-do-	2010	• Five genotypes of soybean viz., MACS 1184, MAUS 417, MACS 1188, DS 2614 and DSB 12 were found moderately resistant to pod blight (<i>Collectrotrichum truncatum</i>) and four genotypes viz., MACS 1188, TS 2, AMS 1 and JS 335 were grouped under tolerant category.					
234.	Management of early blight (Alternaria solani) of tomato in midhill conditions of Meghalaya.	Ms. Iterekha R. Marak	-do-	2011	• The genotypes MT-1 and BT-106 were found moderately resistant to of early blight of tomato (<i>Alternaria solani</i>) and showed better yield under field conditions.					
235.	Characterization of fluorescent Pseudomonads and their evaluation	Ms. Thalhun Lhingkhanth em Kipgen	-do-	2011	• Pseudomonas flourescens isolate F. Pd19 was found effective against Ralsotonia solanacearum, the bacterial wilt pathogen of solanaceous vegetable crops					

236.	against Ralstonia solanacearum (Smith) Yabuuchi under Meghalaya condition. Management of Soybean collar rot	Mr. Ajit Debbarma	-do-	2011	 in vitro conditions. Pseudomonas putida and Trichoderma viride were found the most promising
	caused by Sclerotium rolfsii Sacc. under mid hill conditions of Meghalaya.				 bio-control agents against collar rot pathogen, <i>Sclerotium rolfsai</i>. Garlic extract was the most effective botanical against <i>S. rolfsai in vitro</i> conditions.
237.	Studies on bud rot (Phytophthora palmivora) of arecanut and its management through ecofriendly methods in Meghalaya.	Ms. Domesticity Lyngdoh	-do-	2011	• Garlic and Duranta extracts were found effective at 5% and 10% concentration, respectively against bud rot of arecanut pathogen, <i>Phytophthora palmivora</i> invitro conditions.
238.	Etiology of post- harvest bacterial soft rot of King Chilli and its management.	Mr. Albertson L. War	-do-	2012	Acetic acid, Strerptocycline and Datura leaf extract in different combinations were the promising treatments against bacterial soft rot of king chilli.
239.	Management of turmeric leaf spot, Colletotrichum capsici (Syd.) Butler and Bisby under in-vitro condition.	Ms. Binalata Kangjam	-do-	2012	• Garlic clove extract, <i>Trichoderma</i> harzianum, <i>T. viride</i> and <i>Psuedomonas</i> fluorescens as well as fungicides viz., Sixer, Tilt and Avone were found highly effective against turmeric leaf spot pathogen, <i>Colletotrichum capsici</i> under in vitro condition.
240.	Evaluation of native fluorescent pseudomonads against wilt pathogens of major vegetables in Meghalaya.	Ms. Kongbrailatp am Jina Devi	-do-	2012	 Pseudomonas fluorescens and P. putida were identified as the dominant fluorescent pseudomonads associated with different crop rhizosphere. MRN 18, PC and USR 9.2 were the potential isolates against the wilt pathogens of vegetables in vitro conditions.

241.	Eco-friendly management of turicum leaf blight (Exserohilum turcicum) of maize in mid-hill conditions of Meghalaya.	Mr. Lourembam Sanjaoba Singh	-do-	2012	Biocontrol agent <i>Trichoderma harzianum</i> was found effective in controlling Turicum leaf blight (<i>Exserohilum turcicum</i>) of maize next to fungicide treatment.
242.	Characterization of Ralstonia Solanacearum (Smith) Yabuuchi et. Al., Isolates from Meghalaya and its Management in Tomato.	Ms. Janshame Tariang	-do-	2013	• Two fluorescent pseudomonad strains <i>viz.</i> , USR 9.2 and PC were found highly effective against bacterial wilt of solanaceous vegetables under field conditions.
243.	Management of Cabbage Leaf Spot, Alternaria spp. Under Mid Hill Conditions of Meghalaya.	Ms. Kanchanbala Thangjam	-do-	2013	Biocontrol agent <i>Trichoderma viridae</i> , neem leaf extract and fungicide propiconazole were found effective against Cabbage leaf spot caused by <i>Alternaria brassicicola</i> under field conditions.
244.	Ecofriendly Management of French Bean Anthracnose (Colletotrichum lindemuthianum) under Mid Hill Conditions of Meghalaya.	Ms. Nirmala Maibam	-do-	2013	Three French bean genotypes viz., Rajma Gold, ML-D and ML-F were found moderately resistant to anthracnose disease.
245.	Management of French Bean Rust (Uromyces appendiculatus) using Biocontrol Agents.	Ms. Supriya Laishram	-do-	2013	• French Bean genotypes <i>viz.</i> , Arka Anoop and Selection-3 were found highly resistant to rust (<i>Uromyces appendiculatus</i>) under field conditions.
246.	Management of sheath rot {Sarocladium	Ms. Thongbam Omega	-do-	2014	Trichoderma viridae, neem leaf extract and the systemic fungicides viz., Carbendazim, Hexaconazol, Tebuconazole and

247.	oryzae (Sawada) Gams and Hawksworth} in rice under in vitro condition. Etiology of ginger rhizome rot complex in mid- hills of Meghalaya	Ms. Chanda Poudyal	-do-	2014	Propiconazole at 0.1 % concentration were found effective against sheath rot of rice pathogen, Sarocladium oryzae in vitro conditions. • Allium sativum (at lower conc.), Lantana camara, Trichoderma harzianum, Pseudomonas fluorescens and copper oxychloride were found effective against
248.	and its management. Management of grain discolouration complex in rice.	Ms. Ibakorlang Suting	-do-	2014	ginger rhizome rot pathogen in vitro conditions. • Sarocladium oryzae, Fusarium moniliforme and Bipolaris oryzae were the three dominant fungal pathogens
249.	Studies on	Ms. Hissay	-do-	2015	associated with grain discolouration of rice. • Lima bean (<i>Phaseolus lunatus</i>) was
	Ascochyta Blight of Beans.	Lhamu Lepcha			found highly resistant to Ascochyta blight with 0% PDI. Whereas the four genotypes of French bean VIZ., RCMFB 75, RCMFB 61, RCMFB 62 and Selection 9 were found moderately resistant.
250.	Variability Studies of Pathogenic Alternaria spp. On Cruciferous Crops.	Ms. Iadariti Kharumnuid	-do-	2015	 Isolates of <i>Alternaria</i> spp. collected from different crucifers showed high variability in cultural, morphological and pathogenic chararacteristics. Isolates collected were found mostly belonging to <i>A. brassicicola</i>, after confirmation using molecular techniques.
251.	Influence of Soil Factors on <i>Rhizoctonia solani</i> in Meghalaya.	Mr. Kadiri Mahendra	-do-	2015	• Most of the <i>Rhizoctonia solani</i> isolates causing diseases in rice and maize belonged to AG 1-IA based on the identification using specific primers.
252.	Characterization and Evaluation of Rhizospheric Bacillus spp. From Jhum Cycles against Major Crop	Mr. Paodumai Seisou Khozii	-do-	2015	• Isolates COB15Y4 (<i>Bacillus pumillus</i>) and RB5Y1 (<i>B. cereus</i>) showed better performance with respect to bio-control potential as well as PGP attributes of the respective crops against soil borne pathogens of Jhum crops.

	Pathogens.				
253.	Distribution Pattern and Molecular Variability of Banana Bunchy Top Virus (BBTV) in Tripura.	Mr. Tanmoy Das	-do-	2015	The comparison of Tripura isolates of BBTV among the Districts and within each district indicated nucleotide variation in DNA R in case of isolates from North Tripura and Khowai.
254.	Host - Pathogen Resistance in Phomopsis Fruit Rot of Brinjal in Meghalaya.	Mr. Gurumayum Robert Daniel	-do-	2016	• Only one brinjal genotype, 12/BRBWRES-3, was found as moderately resistant to Fruit Rot causing pathogen <i>Phomopsis vexans</i> under pot conditions.
255.	Characterization of Papaya ring spot virus Pathotype P from Mid-Hills of Meghalaya.	Mr. Korla Saratbabu	-do-	2016	Biological and molecular characterization of PRSV -P isolate from mid hills of Meghalaya (PRSV -P: Umiam) showed similarity with previously reported PRSV isolates from India.
256.	Evaluation of Antagonistic Potential of Native Trichoderma spp. Against Major Soil Borne Pathogens.	Ms. Lopi Rebi Kojum	-do-	2016	• <i>Trichoderma</i> isolates TL 3.2 and TL 3.8 were found best in respect to biocontrol potential, functional attributes and efficacy in field condition for managing soil borne fungal pathogens of tomato.
257.	Pathogenicity of Rhizoctonia solani Kuhn on Major Weeds Prevalent in Rice and Maize Ecosystem in Meghalaya.	Ms. R. Saveinai	-do-	2016	• Rhizoctonia solani isolate of rice (SRS) was found pathogenic on all the lowland rice and upland weeds. Whereas, maize isolates (RSM 2) was not pathogenic on Cyperus difformis, C. haspans, C. odoratus, Sagittaria sagittifolia, Celosia argentea, Comonelina diffusa and Floscopa scandens.
258.	Host Plant Resistance against Rhizoctonia solani Kuhn causing Foliar Blight in Soybean (Glycine max L. Merril) in Meghalaya.	Ms. Rimikini Laloo	-do-	2016	• The varieties/lines <i>viz.</i> , Dsb 28-3, MAUS 706, KDS 869 and VLS were found resistant to <i>Rhizoctonia solani</i> causing foliar blight in Soybean.

259.	Identification and	Ms. Yashi	-do-	2016	Yellow Mosaic Virus Disease of legumes
	Characterization of	Umbrey			under mid hills of Meghalaya was caused
	Yellow Mosaic				by a distinct strain of MYMIV with a
	Virus (s)				recombinant DNA B derived from
	Associated with				variant MYMIV.
	Yellow Mosaic				
	Disease of Legumes				
	in Mid-Hills of				
	Meghalaya.				
260.	Evaluation of	Mr. Abdel	-do-	2016	Bacterial Endophyte 34 WE obtained
	Biocontrol Potential	Baset Hassan			from roots of wild rice showed better
	of Bacterial	Mohhammed			performance in several PGP attributes
	Endophytes against	Mohmoud			(Cellulase production, shoot elongation,
	Major Diseases of				root elongation and vigour index) and in
	Rice.				terms of biocontrol potential against
					Pyricularia grisea and Xanthomonas
					oryzae pv oryzae in vitro conditions.
261.	Evaluation of	Mr.	-do-	2017	Bacterial isolates GE 8 and FP 2 were the
	Microbial	Abhishek			better performers against major stress
	Antagonists against	Gowda M.N.			(A1, Fe and acidity) in vitro conditions.
	Major Plant				
	Pathogens and				
	Development of				
	Microbial				
	Consortium in				
	Liquid Formulation.				
262.	Studies on	Mr. Emanuel	-do-	2017	• Plant extracts (garlic, winged prickly ash,
	Pesalotiopsis	M. Sangma			aloe vera) and biocontrol agents
	versicolor (Speg.)				(Trichoderma harzianum, T. viridae and
	Steyaert Causing				Pseudomonas putida) were found
	Yellow Leaf Spot				effective in inhibiting the growth of the
	of Guava in				isolates of <i>Pesalotiopsis versicolor</i> .
	Meghalaya and its				,
	Management in				
	vitro.				
263.	Studies on the	Ms. Leeza	-do-	2017	• The native Metarhizium isolates viz., ML
	Antagonistic	Loya			3 and ML 6 were found to be the most
	Potential of				effective against major soil borne
	Metarhizium spp.				pathogens of vegetables viz., Rhizoctonia
	Against Major Soil				solani and Pythium aphanadermatum.

	Borne Pathogens.				
264.	Studies on Antagonistic Potential of Beauveria spp. Against Major Soil Borne Pathogens.	Ms. Lipa Deb	-do-	2017	• The native of <i>Beauveria bassiana</i> isolate BP 1.1 was found most effective with respect to major soil borne pathogens viz., Pythium myriotylum and Phytopthora infestans in vitro conditions.
265.	Pathogenecity of Major Soil borne Plant Pathogens on Common Weeds in Meghalaya.	Mr. Pamala Prince Jayasimha	-do-	2017	• Most of the common weeds of Meghalaya were found susceptible to soil borne pathogens <i>viz.</i> , <i>Sclerotium rolfsii</i> , <i>S. delphinii</i> and <i>Rhizoctonia solani</i> AG 1-IB.
266.	Studies on Morphology, Cultural and Physiological Variability of Colletotrichum capsici (Sydow.) Butler and Bisby Isolates Causing Chilli Anthracnose.	Ms. T. Lalnunsangi	-do-	2017	Colletotrichum capsici isolates collected from chilli fruits showed high variability in morphology, cultural and physiological characters.
267.	Studies on Ascochyta phaseolorum Sacc. Causing Ascochyta Blight on Cowpea and its Management	Ms. B.K. Namriboi	-do-	2018	• Carbendazim, turkey berry plant extracts and <i>Trichoderma harzianum</i> were found effective in inhibiting the growth of <i>Ascochyta phaseolorum</i> causing Ascochyta blight on Cowpea <i>in vitro</i> conditions.
268.	Management of Alternaria spp. Causing Black Leaf Spot of Cauliflower in Meghalaya.	Mr. Heipormi Papang	-do-	2018	• Pitcher plant extract, <i>Trichoderma harzianum</i> , <i>Mancozeb</i> , <i>T. harzianum</i> combined with copper hydroxide and combination of <i>B. subtilis</i> strains (BS217+CoB5Y1) were found effective against black leaf spot of cauliflower caused by <i>Alternaria</i> spp.
269.	Variability Studies of <i>Phomopsis</i> vexans (Sacc. & Syd.) Harter and Eco-friendly	Ms. Moakala Jamir	-do-	2018	 Phomopsis vexans isolates showed high variability in cultural, morphological and physiological characteristics. Allamanda extract and Trichoderma harzianum gave promising results for

	Management of Fruit Rot of Brinjal.				managing brinjal fruit rot pathogen r <i>in</i> vitro conditions.
270.	Evaluation of Bacterial Endophytes Against Ginger Rhizome Rot.	Mr. Meshanki Bamon	-do-	2018	• Microbial consortium of bacterial endophytes <i>viz.</i> , GE-1, GE-4 and GE-6 was found effective against rhizome rot complex of ginger <i>in vitro</i> conditions.
271.	Evaluation of Potential Bacterial Endophytes Against Major Vegetable Pathogens.	Mr. Pranab Malakar	-do-	2018	• Bacterial endophytes <i>viz.</i> , NGB 21 and BE 1 by the application methods <i>i.e.</i> , STMC + SMCBS + SFS (seed treatment MC + soil application before sowing + standard fungicide spray) were found highly effective against major foliar pathogens of vegetables.
272.	Formulation of Bacterial Endophyte Consortium for the Management of Alternaria Blight of Mustard.	Ms. Sushanti Thokchom	-do-	2018	• Seed treatment + root dip treatment + foliar spray of the microbial consortium of <i>Bacillus</i> spp. and fluorescent Psedomonas were found highly effective against Alternaria blight of Mustard under pot culture conditions.
273.	Incidence of Bacterial Soft Rot of Carrot in Meghalaya and Ecofriendly Postharvest Management.	Ms. Ashwini E.	-do-	2019	• The treatments <i>viz.</i> , garlic extract, sodium hypo chloride and net bag in different combinations were found effective against bacterial soft rot of carrot caused by <i>Pectobacterium carotvora</i> sub sps. <i>carotvora</i> .
274.	Incidence of Postharvest Fruit Rot of Chilli (Capsicum annum L.) and its Management in Meghalaya.	Ms. Bhashwati Sharma	-do-	2019	• The treatments <i>viz.</i> , betel vine extract, <i>Bacillus subtilis</i> (CoBY1), sodium metabisulpite, perforated poly bag and combination of sodium metabisulpite with perforated poly bag were found effective against fruit rot of chilli caused by <i>Colletotrichum capsici</i> under laboratory conditions.
275.	Cultivation of Shiitake Mushroom (Lentinula edodes (Berk.) Pegler) in	Mr. Madhan N.	-do-	2019	• Strain DMR-388 of Shiitake mushroom was considered suitable for commercial cultivation and <i>Quercus griffithii</i> was considered as the best suitable tree

	Wood Logs under				species for its cultivation.
	Net House				
	Conditions of				
	Meghalaya.				
276.	Cultivation of Ganodermalucidum (W. Curt.: Fr.) P. Karst and its Antifungal Properties Against Phytopathogenic Fungi.	Mr. M. Roopesh	-do-	2019	• Among four substrates used for cultivation of antagonistic fungus <i>Ganoderma lucidum</i> , paddy straw with rice bran and wheat straw rice bran when supplemented at different concentration gave better yield.
277.	Standardization of Shiitake Mushroom (Lentinula edodes (Berk.) Pegler) Production Technology in Meghalaya.	Mr. Nandeesha S.V.	-do-	2019	Sorghum grain was found as the ideal substrate for spawn production of Shiitake mushroom and wheat straw substrate used as the best substrate for indoor cultivation of Shiitake mushroom.
278.	Management of Alternaria brassicae (Berk.) Sacc. Causing Alternaria Blight of Mustard in Meghalaya.	Ms. Anjana Rai	-do-	2020	Seed treatment + foliar spray of microbial consortium of bacterium were found effective against <i>Alternaria</i> brassicae causing Alternaria blight of mustard under field conditions.
279.	Studies on Post- harvest Fruit Rot of Banana caused by Colletotrichum musae Corda in Meghalaya.	Ms. Liza Kalita	-do-	2020	• The highest incidence and severity of post harvest fruit rot of banana (Colletrotrichum mesae) was recorded in the warmer areas like Khanapara, Byrnihat and Nongpoh of Rhi-bhoi district whereas, the lowest incidence and severity of the disease was observed in Sohra of East Khasi Hills district.
280.	Incidence, Severity and Management of Turmeric Leaf Spot Disease (Colletotrichum spp.) in Meghalaya.	Ms. Madhusmita Mahanta	-do-	2020	Two bacterial endophytic isolates viz., NGB 21 and BE 1 were found highly effective against turmeric leaf spot pathogen, Colletrotrichum gloeosporioides under in vitro conditions.

201	3.6) (F	1 .	2021	
281.	Management of <i>Alternaria</i> leaf blotch of apple.	Mr. E. Pradeep Kumar	-do-	2021	 Garlic clove extract at 10%, Trichoderma sp. (MYE 9), Bacillus amyloliquefaciens (BE 43) and B. niacin (BG 34) were found highly effective against apple leaf blotch pathogen, Alternaria mali under in vitro condition. In field experiment, garlic clove extract at 10% showed the lowest per cent disease index (PDI) of 25 per cent among all treatments.
282.	Characterization of Phyylloplane Microflora of Tomato (Solanum lycopersicum L.) and their Role against Major Foliar Fungal Diseases.	Ms. Monica Hajong	-do-	2021	 Two potential biocontrol agents isolated from tomato phylloplane viz., CPSH-2 and CPSH-11 showed the minimum incidence of late blight of tomato (Phytophthora infestans) with maximum yield under both pot culture and field conditions. Among different treatments, it was found that the combination treatment (Seed + Soil + root dip + foliar) for both the potential biocontrol agents were found effective against late blight.
283.	"Management of Leaf Blight of Citronella Caused by curvularia andropogonis (Zimm.) Boedijn in Meghalaya"	Ms. Ashee Linggi	Plant Patholo gy	2021	 Citronella variety, mandakini and JC2 were found moderately resistant to leaf blight (curvularia andropogonis) with per cent disease index (PDI) of 28.98 and 32.62 respectively. Biocontrol agents viz., Trichoderma asperellum and T. harzianum as well as the fungicides viz., propiconazole, tricyclazole and zineb and hexaconazole were found highly effective against the leaf blight pathogen under in vitro condition.
284.	Phytopathogenic Microflora Associated with Rice Grains and their Management	Ms. Jyotismita Das	Plant Patholo gy	2021	 Curvularia lunata was predominant fungal pathogen associates with rice grains than other fungal and bacterial pathogens. Seed treatment of CAU R1 with microbial consortia (MC) and individual

					5 endophytes were found superior in maximum percentage of seed germination and vigour index over control as well as they were effective against the grain pathogens.
285.	"Management of Pod Rot of French bean (Phaseolus vulgaris L.) incited by Sclerotium rolfsii Sacc."	Ms. Shaik Munnysha	Plant Patholo gy	2021	• Evaluation of the individual biocontrol agents and microbial consortia under field conditions against pod rot of French bean (<i>Sclerotium rolfsii</i> revealed that seed treatment and soil application with MC4 was found highly effective in managing the disease with lowest PDI (15.87± 0.43) as compared to control (37.30±1.26) and individual application of E1 (26.23±0.86) E2 (29.97±1.31) and E3 (28.23±1.29)
286.	Exploitation of Endophytes for the Management of Ascochyta blight of Cowpea	Ms. Chinka Sireesha	Plant Patholo gy	2021	 Seed treatment and foliar spray with the microbial consortia MC4 was found highly effective in managing Ascochyta blight of cowpea (Ascochyta phaseolorum) under field condition with the lower PDI (18.09%) followed by MC2 (19.53%) as compared to control (33.19%). Number of pods per plant, pod length, weight of 10 pods and plant height (85 DAS) were found maximum in MC4 when treated as seed + foliar treatment among the microbial consortia followed by MC2 and MC3.

SCHOOL OF SOCIAL SCIENCES (SSS)

Sl. No.	Thesis Tit	tles	Name of the students	Year o	,			
				on				
	DISCIPLINE: AGRICULTURAL EXTENSION							
287.	Awareness Utilization agricultural	and of	Ms. Amita H.	2012	Significant association was found between awareness and utilization of communication sources and level of education, land holding, socio-economic status, cosmopoliteness, scientific			

	Communication Sources among the farmers of Manipur			orientation, information seeking behavior and market orientation.
288.	Analysis of public agriculture extension service in Tripura	Mr. Amit Debnath	2012	 The information output behaviour level of the clientele was medium (48.33 per cent). Majority of the clientele had expressed medium relevancy (65 per cent), quality (51.67 per cent) but the overall clientele satisfaction was high (38.33 per cent) among more than one-third of clientele. From the effectiveness indicators, the total expenditure intensity of the department was Rs. 3831.13/ha/year and extension expenditure intensity was Rs. 2260.46/ha/year. The clientele contact intensity was 1.75 hr/clientele/year and the technical manpower: cultivator ratio was 1:1218. The overall process level index was 68.88 and the overall outcome level index was 72.45 for the DoA
289.	A study of training needs of agricultural extension personnel in Meghalaya	Ms. Genialda Nongtdu	2012	The important training need areas in order of importance are Soil Science, Entomology, Agronomy, Plant pathology, Nematology and Horticulture. Correlation analysis shown that age, service length, job performance and training exposure had negative and significant correlation with training needs.
290.	Adoption of resource conservation technologies inRice cultivation and its sustainability in Imphal West district of Manipur	Ms. K. Sony Devi	2012	• The finding also indicate that all the 5 psychological characteristics viz., economic motivation, risk orientation, innovation proneness, attitude towards RCTs and knowledge towards RCTs were found medium adoption by over 50% respondents with percentage distribution of 50%, 66.67%, 61.67%, 70% and 51.67% respectively.
291.	Agricultural innovation systems in System of Rice Intensification in Tripura.	Ms. Suchiradipta Bhattacharjee	2012	 The actors in the SRI innovation systems had fairly strong relationship among themselves and the interactive learning they developed through their association have assisted each other in increasing their knowledge base and efficiency in SRI. While Department of Agriculture (DoA) has been a key player in the SRI innovation systems in the state, the unique role had been played by the local administrative units, the Panchayati Raj

		T		T ('((' (DDI) ' ('
				 Institutions (PRIs) in creating mass awareness about SRI and providing assistance in development of the cultivators. The AIS in SRI in Tripura had its own weaknesses like farmers were more the receiver of technology than being their generator; media being an isolate in Dhalai district and policies like MGNREGS having a negative impact on the income of SRI farmers through high labour cost or unavailability of labour.
292.	Impact of Rubber plantation on livelihood security of farmers of west Tripura district of Tripura.	Mr. Debashis Datta	2012	• It is found that majority of rubber growers' used to send their children to school and private tuitions also while, only 30 % of non-rubber growers' send their children to school. Almost all the rubber growers' got economic support from government, where only 18.33% of non growers' got support from government for their respective cultivation.
293.	Profile and impact of women Self-help groups (SHGs) in Imphal west district of Manipur	Mr. Rajkumar Sandeep Singh	2012	• The study shows that 90.9% of the SHG members participated group meeting regularly and 95.5% of them were found contribute in common fund for the group regularly i.e. every week. 92.8% of the SHG members were returned loan in time regularly every week. Most of the SHG members (86.4%) and (59%) participated regularly in group activities and income generating activities respectively.
294.	An evaluative study on Home science training programmes in Ri- Bhoi district of Meghalaya	Ms. Liza BaiakmenlangNo ngdhar	2012	• The study revealed that majority of the trainees were in between 36-50 years of age and have studied up to middle school level. They had medium exposure to training and majority of the respondents were reported to have frequent follow-up of training programmes in their individual units or self-help groups. Majority of the respondents had medium achievement motivation and medium market orientation.
295.	Information need for pineapple growers in Meghalaya	Mr. Nathanial	2012	• The respondents feel that personal localite sources (50.36%) were more credible than personal cosmopolite sources (49.64%) but only just by a small margin. And among the personal localite sources family (32.37%) were perceived to be most credible.
296.	Impact of ICTs in Agriculture and Rural Development in Meghalaya	Ms. Rebekka Syiem	2013	Mobile phones were widely used by the farmers for the purpose of communication with family and friends, contacting experts on real time basis for getting agricultural advisories and contacting middle-men for marketing of produce. The presence of CSCs at the village level has been a

				boon to the few young educated farmers for
				educational purpose.
				The impact of ICTs on the awareness of the
				farmers reported to be high for disease and
				preventive measures under rural health. Impact
				was also recognized in knowledge enhancement
				particularly for pest and disease management of
				potato.Farmers reaped manifold benefits in terms of its
				time saved by 15.9 fold for agriculture, 8.6 fold
				for rural health and 1.1 fold for rural education
				while cost reduced through using ICTs to avail
				services for agriculture is 14.84 fold, 13.4 fold for
				rural health and 0.71 fold for rural education
				respectively.
				Around 39 per cent of the farmers reported to
				have better price realization through market price
				information and better marketing of produce
				through the ability to communicate efficiently to sell their products to identify market location,
				information on prices of commodities by
				contacting fellow farmer producers and market
				middlemen.
				1
297.	Adoption of	Mr. Ajeet Kumar	2013	65 percent of the respondents belonged to
297.	Improved Mentha	Mr. Ajeet Kumar Pal	2013	65 percent of the respondents belonged to medium level adoption category and the mean
297.	Improved Mentha Cultivation	•	2013	65 percent of the respondents belonged to medium level adoption category and the mean overall adoption score was 30.49 %.
297.	Improved Mentha Cultivation practices by	•	2013	 65 percent of the respondents belonged to medium level adoption category and the mean overall adoption score was 30.49 %. Adoption was highest in the main areas
297.	Improved Mentha Cultivation practices by farmers in Central	•	2013	 65 percent of the respondents belonged to medium level adoption category and the mean overall adoption score was 30.49 %. Adoption was highest in the main areas transplanting and harvesting while pest
297.	Improved Mentha Cultivation practices by	•	2013	 65 percent of the respondents belonged to medium level adoption category and the mean overall adoption score was 30.49 %. Adoption was highest in the main areas transplanting and harvesting while pest management and nutrient management had lowest
297.	Improved Mentha Cultivation practices by farmers in Central	•	2013	 65 percent of the respondents belonged to medium level adoption category and the mean overall adoption score was 30.49 %. Adoption was highest in the main areas transplanting and harvesting while pest management and nutrient management had lowest adoption.
297.	Improved Mentha Cultivation practices by farmers in Central	•	2013	 65 percent of the respondents belonged to medium level adoption category and the mean overall adoption score was 30.49 %. Adoption was highest in the main areas transplanting and harvesting while pest management and nutrient management had lowest adoption. The variables found to be significantly associated
297.	Improved Mentha Cultivation practices by farmers in Central	•	2013	 65 percent of the respondents belonged to medium level adoption category and the mean overall adoption score was 30.49 %. Adoption was highest in the main areas transplanting and harvesting while pest management and nutrient management had lowest adoption.
297.	Improved Mentha Cultivation practices by farmers in Central	•	2013	 65 percent of the respondents belonged to medium level adoption category and the mean overall adoption score was 30.49 %. Adoption was highest in the main areas transplanting and harvesting while pest management and nutrient management had lowest adoption. The variables found to be significantly associated with extent of adoption of mentha cultivation
297.	Improved Mentha Cultivation practices by farmers in Central	•	2013	 65 percent of the respondents belonged to medium level adoption category and the mean overall adoption score was 30.49 %. Adoption was highest in the main areas transplanting and harvesting while pest management and nutrient management had lowest adoption. The variables found to be significantly associated with extent of adoption of mentha cultivation practices were education, land holding, annual household income, experience in mentha farming, contact with extension agents, mass media
297.	Improved Mentha Cultivation practices by farmers in Central	•	2013	 65 percent of the respondents belonged to medium level adoption category and the mean overall adoption score was 30.49 %. Adoption was highest in the main areas transplanting and harvesting while pest management and nutrient management had lowest adoption. The variables found to be significantly associated with extent of adoption of mentha cultivation practices were education, land holding, annual household income, experience in mentha farming, contact with extension agents, mass media exposure, trainings attended on mentha, irrigation
297.	Improved Mentha Cultivation practices by farmers in Central	•	2013	 65 percent of the respondents belonged to medium level adoption category and the mean overall adoption score was 30.49 %. Adoption was highest in the main areas transplanting and harvesting while pest management and nutrient management had lowest adoption. The variables found to be significantly associated with extent of adoption of mentha cultivation practices were education, land holding, annual household income, experience in mentha farming, contact with extension agents, mass media exposure, trainings attended on mentha, irrigation source, labour availability, marketing channel and
297.	Improved Mentha Cultivation practices by farmers in Central	•	2013	 65 percent of the respondents belonged to medium level adoption category and the mean overall adoption score was 30.49 %. Adoption was highest in the main areas transplanting and harvesting while pest management and nutrient management had lowest adoption. The variables found to be significantly associated with extent of adoption of mentha cultivation practices were education, land holding, annual household income, experience in mentha farming, contact with extension agents, mass media exposure, trainings attended on mentha, irrigation source, labour availability, marketing channel and access to distillation unit.
297.	Improved Mentha Cultivation practices by farmers in Central	•	2013	 65 percent of the respondents belonged to medium level adoption category and the mean overall adoption score was 30.49 %. Adoption was highest in the main areas transplanting and harvesting while pest management and nutrient management had lowest adoption. The variables found to be significantly associated with extent of adoption of mentha cultivation practices were education, land holding, annual household income, experience in mentha farming, contact with extension agents, mass media exposure, trainings attended on mentha, irrigation source, labour availability, marketing channel and access to distillation unit. Decrease in water table was the most important
297.	Improved Mentha Cultivation practices by farmers in Central	•	2013	 65 percent of the respondents belonged to medium level adoption category and the mean overall adoption score was 30.49 %. Adoption was highest in the main areas transplanting and harvesting while pest management and nutrient management had lowest adoption. The variables found to be significantly associated with extent of adoption of mentha cultivation practices were education, land holding, annual household income, experience in mentha farming, contact with extension agents, mass media exposure, trainings attended on mentha, irrigation source, labour availability, marketing channel and access to distillation unit. Decrease in water table was the most important undesirable consequence reported while desirable
297.	Improved Mentha Cultivation practices by farmers in Central	•	2013	 65 percent of the respondents belonged to medium level adoption category and the mean overall adoption score was 30.49 %. Adoption was highest in the main areas transplanting and harvesting while pest management and nutrient management had lowest adoption. The variables found to be significantly associated with extent of adoption of mentha cultivation practices were education, land holding, annual household income, experience in mentha farming, contact with extension agents, mass media exposure, trainings attended on mentha, irrigation source, labour availability, marketing channel and access to distillation unit. Decrease in water table was the most important
297.	Improved Mentha Cultivation practices by farmers in Central Uttar Pradesh Contextual	Pal Mr. M.	2013	 65 percent of the respondents belonged to medium level adoption category and the mean overall adoption score was 30.49 %. Adoption was highest in the main areas transplanting and harvesting while pest management and nutrient management had lowest adoption. The variables found to be significantly associated with extent of adoption of mentha cultivation practices were education, land holding, annual household income, experience in mentha farming, contact with extension agents, mass media exposure, trainings attended on mentha, irrigation source, labour availability, marketing channel and access to distillation unit. Decrease in water table was the most important undesirable consequence reported while desirable consequences include high profit, increase in
	Improved Mentha Cultivation practices by farmers in Central Uttar Pradesh Contextual Vulnerability of	Mr. M. Defenderson		 65 percent of the respondents belonged to medium level adoption category and the mean overall adoption score was 30.49 %. Adoption was highest in the main areas transplanting and harvesting while pest management and nutrient management had lowest adoption. The variables found to be significantly associated with extent of adoption of mentha cultivation practices were education, land holding, annual household income, experience in mentha farming, contact with extension agents, mass media exposure, trainings attended on mentha, irrigation source, labour availability, marketing channel and access to distillation unit. Decrease in water table was the most important undesirable consequence reported while desirable consequences include high profit, increase in socio-economic status The result for the test for independence showed that there was significant difference in the level of
	Improved Mentha Cultivation practices by farmers in Central Uttar Pradesh Contextual	Pal Mr. M.		 65 percent of the respondents belonged to medium level adoption category and the mean overall adoption score was 30.49 %. Adoption was highest in the main areas transplanting and harvesting while pest management and nutrient management had lowest adoption. The variables found to be significantly associated with extent of adoption of mentha cultivation practices were education, land holding, annual household income, experience in mentha farming, contact with extension agents, mass media exposure, trainings attended on mentha, irrigation source, labour availability, marketing channel and access to distillation unit. Decrease in water table was the most important undesirable consequence reported while desirable consequences include high profit, increase in socio-economic status The result for the test for independence showed

	T :	Г	ı	
	Agro-Climatic zones analysis in Meghalaya			to be medium. The correlation analysis found out that Level of Educational Scientific Orientation, Innovativeness, Risk Orientation and Level of Awareness had significant positive correlation with contextual vulnerability.
299.	Legumes in Rural Meghalaya: A Socio-Economic Study	Mr. Sao Evalwell Dkhar	2013	 11 different legume crops were found to be under cultivation by the respondents of selected areas. However, average areas put under cultivation of those crops were very low. The per capita consumption of legumes by the respondents was found to be highest in case of West Garo Hills district (77.16 g/day), and lowest in East Khasi Hills (43.42 g/day). Low consumption was due to incompatibility with ethno-cultural food habits of the respondents, which prefers animal proteins as food item than pulse based ones. Important problems as indicated by the respondents were poor yield, non-availability of inputs, utterly inadequate market information and almost inexistent irrigation system
300.	An Evaluative Study on the Impact of MGNREGA in Arunachal Pradesh	Mr.Bai Koyu	2015	 The study revealed that 10.26 lakh job cards were issued in the state during 2008-09 to 2013-14 with a total of 240 lakhs person-days jobs created. Only 8.05 per cent of the works undertaken in the state could be completed till the end of 2013-14 and substantial proportion of the year wise allocated fund remained unspent in the state. 61.25 per cent of the respondents were found to have medium level of awareness on various laid down provisions of the scheme.
301.	Gender Differences in Empowerment in Farm-Households of Tripura	Ms.Kankabati Kalai	2015	 Empowerment level for both genders can be increased by reducing workload and improving access to and decision about credit. For women attention is needed to be given in creating avenues and empowering them for public speaking. Majority of women reported household drudgery, stringent traditional taboos & restriction, balancing farm & home and lack of gender friendly equipments as major problems. As for men, important problem was demanding family members.
302.	Assessment of Job Performance and Clientele Satisfaction of	Mr. P. Lalhmachhuana	2015	• KVK staff perceive that they have low level of performance in getting samples tested (compost /fertilizers /plant protection chemical /seed / soil & water), ensuring that rural youths member within the KVK got a stable and reliable job.

	T	T		
	Selected KVKs in Mizoram			 The clienteles satisfaction was high towards the organisation of different communication methods and compatibility of the subject content with overall farming situation but found to be low in terms of developing vocational efficiency of rural youths KVK staff requires capacity building in leadership & other soft skills, use of ICT tools.
303.	Entrepreneurial Behavior of Floriculturists in East Khasi Hills District of Meghalaya: A Critical Analysis	Mr.Wanmidameh iPassah	2015	 Nearly two-third (62.50 %) of the floriculturists in East-Khasi Hills district of Meghalaya had medium level of Entrepreneurial Behaviour. Personal characteristics of floriculturists viz., 'Education', 'Scientific orientation' and 'Mass media exposure' had significant association with 'Entrepreneurial Behaviour'. About three-fourth of the respondents (70.00 %) had medium size of land holding.
304.	Farmers' Mitigation and Adaptation of Climate in Moderate and High Vulnerable Districts of Madhya Pradesh: A Stakeholder Analysis	Mr.Pankaj Kumar Meghwal	2016	 State Department of Agriculture turned up to be the most active stakeholder. The Likelihood Ratio of 'Level of Education of Farmers' and 'Awareness on Consequences of Climate Change in Agriculture' were significant with respect to 'Low' and 'Medium' categories of decision-making on adoption of mitigation and adaptation practices on climate change in agriculture. Lack of information on appropriate adaptation option was the major problem being faced by the farmers in adoption of mitigation and adaptation of climate change practices in agriculture.
305.	Social Networks of Farmers on "Climate change Mitigation and Adaptation in Western Agroclimate Zone of Tamil Nadu"	Ms.Muthulakshm i B.	2016	 More than 70 % of the farmers had medium mass media access, had medium knowledge on climate change in agriculture and had high fatalism on climate change. The average in-degree and out-degree, of four villages, in the study ranged from 1.571 to 3.619, which reflected poor interaction among villagers w.r.t climate change mitigation and adaptation in agriculture. The average Geodesic distance of 3.119 revealed that at least three persons, on an average, are involved in fastest transmission of a new information on climate change mitigation and adaptation in agriculture.
306.	A study on information Management Behaviour (IMB) of Rice Farmers in Imphal West District of Manipur	Ms.Konjengbam Monika Devi	2016	• It was observed that almost half of the non-adopted farmers too had medium (4303%) level of IMB; but comparatively lower than the adopted farmers. The findings also indicate that the variables like social participation and mass media exposure contributed to the IMB of the non-adopted farmers. Among the adopted and non-adopted farmers there was significant difference in their IMB, annual income, occupation, social participation, mass media

		T	1	
				exposure, cosmopoliteness, extension orientation, innovation proneness and risk orientation.
307.	Training Needs Assessment of Agricultural Extension personnel in Arunachal Pradesh	Ms.Inne Lego	2016	 Majority of extension personnel had high level of training need Training needs were high in micronutrient problem in acid soils and management and use of organic manures as fertilizers. Training exposure of the extension personnel was low
308.	Usage of ICT in Agriculture by the Farmers and Extension Personnel in Dimapur District of Nagaland	Ms. DitolynSumi	2017	 Communication behaviour had significant association with ICTs. The existence of significant difference in the both the 'Level of Awareness' and 'Usage of ICTs' between the Farmers and Extension Personnel were observed from the study area. Customized information in form of Voice Call/ SMS/ MMS in local dialect/ language in the area of interest and importance of farmers should be readily available. The organisations and departments concerned with agricultural development should be engrained with advances in ICTs for the speedy dissemination to farmers.
309.	Impact of use of ICT by rural youths of Manipur	Ms. Mayanglambam Victoria Devi	2017	 To study the access and utilization of ICTs by rural youth. To analyze the impact of use of ICTs on rural youth. To find out the constraints faced by rural youth in access and usage of ICTs.
310.	Gender Differences in the level of Economic Empowerment of farm- Households of Manipurs	Mr.Meghajit SharmaS.	2017	 To carry out gender analysis of economic activities within a farm-household To assess the gender differences in the level of economic empowerment To find out gender disaggregated constraints in economic empowerment
311.	A study on effectiveness of training programmes conducted by Krishi Vigyan Kendra (KVK) West Garo Hills of Meghalaya on Socio-Economic improvement of rice growers	Mr. Samir Medhi	2017	 It was found that trainings were effective in increasing the knowledge of trainees about improved rice farming practices hence more number of trainings should be organized by KVKs so that it can benefited to more number of rice growers. Different training programmes followed by field demonstration should be organised and imparted so that farmers develop confidence in them to take up improved methods to increase their productivity and improve their socio-economic condition. 2. Allocation of budgets under contingency head

				should be increased for trainings leading to increase in dimensions and numbers of KVK trainings under different thematic areas of agriculture and allied sectors.
312.	Communication Behaviour of the farmers enrolled in M4agri NEI	Mr.Achin Kharmudai	2017	 To study the personal and socio-economic profile of the farmers To study the communication behaviour of the farmers To identify the constraints in usage of the services rendered by m4agriNEI
313.	A study on attitude of Agriculture collegian towards opting Farming as a Profession"	Mr.Deena Dayalan. S. K.	2017	 To study the personal, socio-economic and psychological characteristics of agriculture collegian. To measure the attitude of the agriculture collegian towards opting farming as a profession and to find out its relationships with the personal, socio-economic, psychological characteristics To know constraints of the agriculture collegian towards opting farming as a profession.
314.	A study on entrepreneurial behavior of the members of women self-help Groups in west Garo Hills District of Meghalaya	Ms. Chekame A. Sangma	2018	• More number of WSHG members (45.00%) were found to belong to age group of 35 – 50 years, most of the respondents (41.25%) were educated upto 10 th standard, majority of the respondents (75.00%) had family size ranging from 5 to 9, most of the respondents (58.75%) belonged to medium monthly income category, and 90.00 per cent of respondents had land holding of less than 1 ha. Majority (70.00%) of the respondents had medium level of social participation. More than two-third of the respondents (68.75%) had medium mass media exposure. More number of the respondents (56.25%) had medium level of aspiration.
315.	Adoption Behaviour of Rice Growers on improved Rice Technology through Krishi Vigyan Kendra (KVK) in Khowai District of Tripura.	Ms. Debjani Das	2018	• The study also reveals that majority of the respondents in KVK adopted villages had medium level of knowledge on improved rice farming practices (54.16%), level of adoption (55.00%), level of productivity (68.34%), annual net income (81.67%), self confidence (58.33%) and materials possession (60.00%). Among the independent variables under study age, education, farming experience, annual income, training received, land holding, were found to be significantly associated with the knowledge and adoption level of improved practices of rice technologies.

				• Inadequate availability of quality seed at proper time, lack of knowledge about scientific cropping pattern, cropping system, method of application, non-availability of improved implements and other critical inputs such as FYM/organic fertilizers, low price of product in local market, lack of storage and marketing facilities, lack of guidelines about seed treatment were the major problems faced by the respondents with respect to adoption of improved rice cultivation practices in the study area.
316.	Assessment of child poverty in rural farmhouseholds of Garo Hills, Meghalaya"	Mr. Guruprasad Nagesh Hedge	2018	 To study the profile of children living in the poor rural farm households. To find out the dimensions of poverty among those children
317.	Agro-Advisory Effectiveness of m4agriNEI on Climate sensitive sustainable agriculture: An Evaluative Study	Mr. IrshadHussain	2018	 More than half (55.20%) of the total respondents were found to be in the middle aged group followed by young aged group about (34.30%). Around (38.80%) of the respondents had an educational qualification of up to high school followed by one-third (35.10%) of the respondents had primary education qualification and (12.70%) were found to be illiterate. Majority of about (80.60%) of the respondents were found to be in marginal famers.
318.	Ascertaining m4agriNEI Farmers' innovations on climate-smart agriculture: A case study	Mr. Salam Prabin Singh	2018	 Apropos to the 'Age' of the respondents, that more than half of the total respondents (55.38 %) belonged to the middle age group (35 – 50 years). With regard to 'Level of Education', highe percentage of the respondents (35.40%) have 'High School' level of education. As far as 'Annual Income' was concerned, it was found out that majority of the respondent (69.23%) belonged to 'Medium Annual Income' group.
319.	A Study on Entrepreneurship Behaviour of Tribal Farmers in adoption of Improved Piggery Farming Practices in Dhalai district of Tripura	Mr. Biswajit Debnath	2018	 Out of 120 respondents, majority of farmer belonged to middle age (35-50 years) category. The findings also indicated that majority of the farmers had medium family size (47.50%), medium level of experience in pig farming (54.16%), medium level of annual income (46.67%), medium level of economic motivation (50.84%), medium level of mass media exposure (48.34%) and medium level of extension contact (43.34%).

				• The study has clearly shown that most of the
				farmers had medium level of entrepreneurial behaviour with EBI score ranging from 41.26 to 68.56.
320.	A Study on organizational climate as perceived by the employees of district agricultural offices in Meghalaya	Mr. Sachin V R	2018	 Majority of overall (51.52%), grade A (46.53%) and grade C (40.74%) employees perceived organizational climate at medium level. Whereas grade B employees perceived at very high, high and medium levels in equal percent (32.00%). In age, majority in overall employees are old(40.00%), grade A(42.86 %) and grade C(48.15%) are young and grade B (44.00 %) are middle aged. In education, majority in overall(28.75%) and grade B(76.00%) employees are 12th passed, grade A(67.86%) and grade C(62.96%) employees are BSc.(Agri.) graduates and 10th passed respectively.
321.	Impact of Horticulture-Hubs on the farmers of Meghalaya	Mr. Kungumaselvan T	2019	 It was observed the mean extent of adoption was found to be highest in the case of anthurium (68.17 %) followed by strawberry (64.85 %). However, in case of polyanthus and (47.58 %) and ranenculus (48.33 %), the extent of adoption was comparatively lower. Impact was assessed in seven selected impact indicators. In case of knowledge level on recommended practices, significant increase was observed the beneficiaries over time. In Knowledge level of the beneficiaries was increased significantly compared to before due to training attended on improved package of practices, regular contact with the horticulture officers and progressive farmers.
322.	A Study on e- readiness of extension personnel in agricultural institutions in Ri- Bhoi district of Meghalaya	Nikhil J.	2019	 More than three fourth (81.67%) of the respondents belonged to the middle age (32-48 years) group and 65 per cent of them were male respondents. Little above half (53.34%) of the respondents possessed doctorate degree followed by 28.33 per cent with post-graduation. Majority (70.00%) of respondents had medium job experience with a range of 4-19 years while 41.67 per cent of the respondents' major job responsibility was teaching.
323.	Analysis of innovation system of horticulture in Meghalaya	Sengmitchi D. Sangma	2019	 Actor linkage matrix revealed that linkages between stakeholders with similar organizational levels were stronger than linkages between stakeholders working at different organizational levels. The social network analysis of the stakeholders of the

324.	Dynamics of	Mr.	2020	hubs revealed that overall the networks were very loosely connected to each other with many absent ties. • Among the policies and support structures existing in the state Mission for Integrated Development of Horticulture (MIDH) and Floriculture Development Scheme have been a major contributor to the success of horticulture development in the state. 1. The concept on Integrated Agriculture and Animal
32	Design Thinking on Climate Smart Agriculture by Under-Graduate Students in Agriculture under Central Agricultural University Imphal	EllyKipkorirKir wa		Husbandry Farming Systems based CSAPs should be subject to DT for students. 2. Theoretical based teaching and learnings systems should be oriented towards practical based which have a composite systems on enhancing Competency on ICT Application, Ability to Visualize Abstract Ideas, Memory Retention, Reading Behaviour and Aptitude of students.
325.	Nutrition Competencies of Agricultural Extension and Advisory Service (AEAS) providers in Meghalaya	Mr. NkululekoNyoni	2020	 Through an extensive review of available literature, a total of 37 nutrition competency items for AEAS providers' nutrition extension were identified across eight (8) broad dimensions viz; Farming systems that promote nutrition, Post-harvest handling & food safety, Managerial & planning skills, Household nutrition planning, Gender-related nutrition issues, Affective & soft skills, Extension education & communication and Knowledge on human nutrition & related programmes. Overall, AEAS providers' nutrition extension competency ranged between high to very high (mean 3.56 to 4.50) with highest competency in affective and soft skills (x=4.50, S.D 0.75), followed by knowledge on human nutrition and related programmes (x=3.92, S.D 0.92) and extension education and communication (x=3.83, S.D 1.05) dimensions.
326.	Community Participation and Perceptions in Rural Tourism: A study in Khasi Hills of Meghalaya	Ms. PagadalaSaiPriya nka	2020	 A total of 15 categories of community stakeholderswere identified. The dorbar was the only stakeholder category observed to perform multiple roles and reported to be involved in all activities at various levels of participation and forms the major decision-making body. Tourists had high importance and dorbar had high influence associated with rural tourism project in both the villages. Stakeholders of Mawlynnong village had more strong linkages among themselves than that of Sohliya village. 80.00 percent of respondents from Mawlynnong and 53.34 percent of respondents from Sohliya had favourable attitude towards rural tourism. Factor 4 'opinion about tourism development' was ranked first and factor 1 'community and personal benefits derived from tourism' was ranked second in both villages. Sightseeing was the most practiced experience by

				tourists in Mawlynnong (70.00%) and in Sohliya (80.00%). Tourist of Mawlynnong were relatively more satisfied (\bar{x} = 3.87) than that of Sohliya (\bar{x} =3.56).
327.	Mapping Informal networks of Mera Gaon Mera Gaurav (MGMG) Beneficiary Farmers in Ri-Bhoi District on Adoption of Climate-smart Agricultural Practices	Ms. Polasa Bhuvanasri	2020	 Information seeking and sharing of CSAPs by farmers in domains of CI, AAS, NRM and PP within the six MGMG adopted villages of CPGS-AS, CAU, Imphal and ICAR RC for NEH Region were very similar. Innovation on CSAPs did not disseminate nimbly in a homophilous ISN of farmers. Different ordinals of eight predictor variables viz., 'Age', 'Gender', 'Education', 'Operational Land Holding', 'Annual Income', 'Farming Experience', 'Mass Media Access' & 'Knowledge on CSA Practices' indeed influenced/enhanced in the outcome of being Low, Medium and High ABCSAP.
328.	Internalizing Design Thinking on Remunerative Agricultural Enterprises Amongst Under- Graduate Students in Agriculture of Central Agricultural University, Imphal.	Mr. Bitu Nangkar	2021	 The identification of vegetable cultivation as the promising RAEs in the study area has been worthy as it has assured additional income to the farmers. Originality', Competency on ICT application', 'Intrinsic Motivation', and 'Creative Problem Solving' ability of students is found to have positive role on the internalization of Design Thinking. Inability to transfer theoretical knowhow of RAEs into real practice' had been picturized as the most limiting restrain faced by the students.
329.	Online-teaching competencies required for teaching agricultural undergraduates in North-East India during COVID-19 pandemic	Ms. Progati	2021	 A total of 23 competency items across 5 factor dimensions viz., Technological Competency, Teaching Facilitation, Session Management Competencies, Teaching Ethics and Content Facilitation was identified. Of the 5 competency dimension highest competency score obtained for Teaching Ethics and lowest in Content Facilitation followed by Teaching Facilitation. Most of the respondents (74.66%) were found to be have medium competency level. Online teaching experience; attitude towards online teaching; access to technical support; and organisational facilities and support were calculated to have significant and positive correlation with online teaching competency of the respondents. The most important constraints reported by the respondents were: Difficulty to conduct field and lab related practical classes, Difficulty to assess students' attention and understanding during online class, Dissociation of theoretical frameworks of courses on

	1			
				practical applications,
				• Difficulty in assigning and execution of group
				assignments, Psychological stress and anxiety induced
		DISCIDI INE. A	CDICIII	by the pandemic. TURAL ECONOMICS
330.	Economics of	Mr. Gyati Riku	2010	_
330.	ginger in Ri-Bhoi district of Meghalaya	Mi. Oyali Kiku	2010	• MVP of inputs at their geometric mean level showed that farmers still have scope for further utilization of area and seed to increase the returns. In Ri-Bhoi district four marketing channels were identified and found that channel I was the most effective channel in case of quantity transaction (48% of total marketed surplus) while channel III was most efficient with marketing efficiency of 8011%.
331.	Comparative	Ms. Beauty	2011	B-C ratio of was found more on SRI farm
	economics of system of rice	Debbarma		• The benefits of SRI should be realized by farmers through extension services
	intensification (SRI)			 More training and awareness programmes on SRI should be initiated by the Govt.
332.	Economics of chow-chow (Sechium edule) in Aizawl district of Mizoram	Ms. Lalrinsangpuii	2011	• The Cobb-Douglas production function indicated that the variables land and human labour were significant while input manures and fertilizers showed negative significant. MVP of inputs at their geometric level showed that farmers still have scope for further utilization of land to increase the returns.
333.	Economics of turmeric (Cucuma longa Linn.) in Jaintia Hills district of Meghalaya	Ms. Janailin S. Papang	2011	• The results of Cobb-Douglas analysis revealed that the regression co-efficient of land and manures, fertilizers and plant protection chemicals were significant. Regression coefficient for human labour was negative and non-significant. An increase in expenditure on manure, fertilizer and plant protection chemical would result in improving the production of turmeric. There is no scope of increasing production by adding more human labour. The marketable and marketed surplus was found to be 63.08% and 60.56% to the total production respectively.
334.	Economics of pineapple production in Ri-Bhoi district of Meghalaya	Ms. Dayohimi Rymbai	2012	 Labour intensive Establishment cost: Large > Medium > Small Total cost: Large > Medium > Small Returns: Large > Medium > Large Marketed surplus: Large > Medium > Small
335.	Socio-Economic	Ms. Dahun	2012	• The study found that there was 27.43 per cent

336.	study of Mahatma Ghandhi National Rural Employment Guarantee Act (MGNREGA) in East Khasi hill district of Meghalaya Economic analysis of Umton Syiem watershed, Meghalaya	Shisha Dkhar Ms. Wansaka D. Kynjing	2012	 increase in the income of beneficiaries after working in MGNREGA. The present income of the beneficiaries was higher by 19.66 percent as compared to the non beneficiaries. The average monthly expenditure on food and non-food items of beneficiaries (after MGNREGA) also increases and was also found to be higher than that of non-beneficiaries. The income distribution among the sample households is more uneven in the watershed area than in the non-watershed area. The per family employment level was also higher in the watershed area indicating more employment opportunities by the project.
337.	Analysis of agribased self-help groups in Meghalaya	Ms. Mary Prathyusha Gondi	2012	• It was found that the SHGs saved 76 per cent of the total committed savings. The outreach of internal loan was cent per cent for the first loan and 74 per cent for the repeat loans. On an average the groups received an external loan savings. About 86.67 percent of the members reported that the loan amount was sufficient.
338.	Economics of Rapeseed and Mustard cultivation under zero tillage in Thoubal District of Manipur	Ms. Monika Aheibam	2012	Production function analysis reveals that the regression co-efficient for human labor and chemical fertilizers were found to be positively significant while the regression co-efficient for seed and plant protection chemicals were turned out to be negatively significant. As indicated by resource use efficiency measures (MVP: MFC), seeds and plant protection chemicals per hectare were over utilized by the farmers in the study area which brought unnecessary huge expenditure.
339.	Rice cultivation in Senapati district of Manipur: An economic analysis	Mr. Koijam Johny Singh	2012	The total area, production and yield of rice in Manipur during 2000-01 to 2011-12 have increased by about 5.30 per cent, 23.84 per cent and 17.33 per cent, respectively. The growth rates in area, production and yield of rice in Manipur during 2000-01 to 2011-12 was -0.67 per cent 0.68 per cent and 1.36 per cent per annum, respectively.
340.	Rice cultivation in West Tripura district: An economic analysis	Ms. Dipika Jamatia	2012	• The total area under rice has declined by about 11.72 per cent, total production has increased by about 74.40 per cent and yield has increased by about 97.55 per cent during the period of 1985-86 to 2009-10. The growth rates in area,

				production and yield of rice in Tripura during 1985-86 to 2009-10 was -0.32 per cent, 2.08 per cent and 2.41 per cent per annum, respectively.
341.	Economics of production of cashew in West Garo Hills district of Meghalaya	Mr. Pradip Sangma	2012	• The overall total cost of establishing a cashew orchard was estimated to be Rs 28542.00 per hectare and the establishment cost was highest for a large category of orchard amounting to Rs 28728.00 in comparison to small (Rs 28016.00) and marginal(Rs 26686.00) category of cashew orchard. The gross return obtained from the harvest in the fourth year was estimated to be Rs 117600.00 for marginal category and for small and large growers, it was estimated to be Rs 107800.00 and Rs 110950.00, respectively.
342.	Economic analysis of production and marketing of Areca nut in East khasi hills of Meghalaya	Mr. Remdor Dkhar	2012	Economic analysis of data reveals that areca nut cultivation is economically feasible and viable in the study area. Two major channels were identified efficient in three selected markets. Channel-I was found efficient in Sohra market and Channel-II in Pynursla market.
343.	Sustainability of wetland transplanted rice farming in Nagaland	Mr. Sajapong	2013	 Per hectare cost of rice cultivation was `49575.80/ha in Nagaland. The net return was calculated to be `3583.39/ha. About 86.05% of the farms in lowland were moderately sustainable and in upland 70.27% of the farms were sustainable.
344.	Performance Analysis of Cooperative Credit Institutions in Manipur	Ms. Janee Yumlambam	2013	The overall recovery performance of MSCB was poor. The Heigrujam and kangmong PACS of valley region, found to be good in recovery position. Ratio analysis has revealed that the liquidity position of PACS was satisfactory. Long term solvency position of the PACS was poor.
345.	Economics of strawberry production and marketing in Ri-Bhoi district of Meghalaya	Mr. Damewan Muliar	2015	 The costs and returns both found to be increased with the increase in size of farm which implies 'economies of scale'. The total cost was higher due to variable cost than that of fixed cost The share of net price received by the producers in consumer's rupee found to be higher in Channel-III (Producer → Retailer → Consumer). Channel-III was found efficient than Channel-I and Channel-II.
346.	Economics of Production of Selected Cultured	Mr. Ruben Mog	2015	 The fish production was found to economically feasible and profitable in the study area across the category. The price spread was found to be higher under

		T		
	Fisheries in Gomati District of Tripura			 channel-I (Producer → Wholesaler → Retailer → Consumer), due to more marketing costs incurred by agencies involved and more marketing margins earned by them. Inadequate financial support from the government, transportation, non-availability of fish feed, storage and non-availability of fingerling in time were the major problems faced by the fish producer in the state.
347.	Drought and rice productivity in Manipur: A socioeconomic analysis.	Ms. Nivetina Laitonjam	2015	 About 18 years (54.55%) registered mild drought whereas moderate drought occurred only once. No severe and extreme drought has occurred during the study period. One per cent increase in June rainfall led to 0.33 per cent increase in yield of paddy. The average productivity of rice reduced from 3490.47 kg/ha to 2137.10 kg/ha during low rainfall/drought, which is a loss of 35.09 per cent.
348.	Rainfall variability and rice productivity in Meghalaya: A socio-economic analysis.	Mr. Deotrephy K. Dkhar	2015	 All the monsoon weeks (22nd to 39th SMW) have high (88-100%) probability of being wet week. One per cent increase in June rainfall led to 0.75 per cent increase in yield of <i>kharif</i> rice whereas with one per cent increase in the amount of rainfall in August led to the decline in rice yield by 0.46 per cent. With one percent increase in average monsoon rainfall led to the reduction in variability in yield of <i>kharif</i> rice by 2.38 per cent.
349.	Risk to drought in Nagaland: An empirical study of farm households	Mr. Baiarbor Nongbri	2016	 It was observed that the normal annual minimum and maximum temperature has increased in the range of 0.01°C and 0.03°C in Phek and Dimapur district of Nagaland during 1975-2013. He reported that the annual rainfall has decreased by 2.76 mm/year and 2.99 mm/year at Phek and Dimapur districts, respectively and has shown insignificant and negative trend. Moderate drought years were higher at Dimapur (17.94%) than at Phek (12.82%). Extreme drought was experienced at Phek during 2006 and at Dimapur during 2006 and 2012. Due to the high sensitivity and low adaptive capacity, farm households were more vulnerable to drought and therefore, under high risk of yield loss.
350.	Economics of	Ms. Astha	2016	The total cost of production was estimated to be

	C1 1	Ъ	1	D 107 (0)
	Chow-chow (Sechium edule) Cultivation in West Khasi Hills District of Meghalaya	Barman		 Rs. 135.42/q. It was found that the marketable surplus was equal to the marketed surplus (96.57% of the total produce). Four marketing channels were identified of which channel I was the most used channel as 42.80 per cent of the marketed surplus was sold through this channel followed by channel II (26.23%), channel III (18.72%) and channel IV (12.25%). Unavailability of labour ranked 1st among production problems. While the most serious problem for marketing of chow-chow was lack of proper market. In case of market intermediaries, gluts during peak period were the most serious problem faced by them in handling of chow-chow. Extension services should also be provided to make the farmers aware of new technologies and farming practices in order to increase quality and quantity of output. Proper storage facilities are to be developed in order
351.	Economic Assessment of Lemon Production in Ukhrul District of Manipur	Ms. Singyala Chiphang	2016	 to reduce post-harvest losses. The CAGR for production revealed that the growth rates for area, production and productivity were positive for all districts in Manipur. Government may promote rainwater harvesting structure to irrigate the lemon orchard as 62.88 per cent have been reported of irrigation problem. Government subsidy on planting materials and other agricultural inputs for farmers to encourage them to undertake cultivation of lemon in the region.
352.	Economics of Large Cardamom Production in Zunheboto District of Nagaland	Ms. Tovinoli Shohe	2016	 Compound Growth Rate computed for area, production and productivity of large cardamom in Nagaland showed positive growth rate only in area, while growth rate of production and productivity was found to be negative in the state. The net farm income was estimated to be Rs. 251559.65 per hectare. It was observes that the net farm incime increased with increase in age

	T	T	T	
				 of the plants. The study on economic viability measurers indicates the cultivation of large cardamom to be economically feasible and viable in the study area.
353.	Economic analysis of pineapple production in Tripura	Ms. Juicy Debbarma	2016	 The costs and returns both found to be increased with the increase in size of farm which implies 'economies of scale'. The major problems expressed by both marginal and small category farmers were the cost of earthing up/ intercultural operation, marketing problem, storage problem, non-availability of quality planting materials, lack of credit facility and transportation problem
354.	"Rice cultivation under climate change in West Siang district of Arunachal Pradesh: An Economic study"	Ms. Mun Yomcha	2017	 The monsoon onset dates got delayed to 2nd week (30%) or 'after the 2nd week' (20%) during 1984-1993. Majority of the farmers (60%) perceived the case of rainfall deficit at 6-10 per cent level while 58 per cent and 18 per cent farmers reported about the occurrence of sudden excess rainfall at 6-10 per cent and 11-20 per cent, respectively. August rainfall is a risk increasing factor while, July rainfall is a risk decreasing factor.
355.	Economics of khasi mandarin in East Khasi Hills and West Khasi Hills districts of Meghalaya	Mr. Sukheimon Passah	2017	 The net cash flow (net return) was worked out to be more on group II orchards. It may be due to better management practices used by them. The NPV (₹ 226289), B: C ratio (2.26), IRR (22) and PBP (0.67) was found to be economically feasible and profitable in the study area across all the groups of orchards. Even though the economic indicators show a positive results in term of investment opportunity but it was not able to generate surplus from it for reinvestment at the farm (mandarin orchards). Channel III was found to be most efficient in both the market with market efficiency of efficiency of 17.20 in Sohra market and 12.05 in Mawkyrwat market. This was mainly due to the absence of intermediaries.
356.	Value chain analysis of fish in Loktak Lake of	Mr. N. Chinglen Meitei	2017	• It is observed that Manipur shows a positive growth rates in production (4.67%) and productivity (4.68%) during the observed years

	Manipur			• Maximum of the captured fish (41.67%) is disposed off through Channel-I (Producer→ Local trader (uunja) cum Retailer→ Consumer) followed by Channel-II (Producer→ Consumer) and Channel-III (Producer→ Wholesaler→ Retailer→ Consumer) with 33.33 percent and 25 per cent and it was observed that Channel-I was found to be most popular as maximum of the captured fish were disposed off through this channel.
357.	Production and Marketing of Kiwi in West Kameng District of Arunachal Pradesh	Ms. Ainy Taloh,	2017	 The average yield and the average returns from kiwi obtained by the sample farmers in overall group of orchards was found to be 3.63 t/ha and ₹270066.45/ha. The overall disposal of kiwi was found to be highest in Channel I with 49.63 per cent which was followed by channel ll (42.05%) and channel lll (8.30%) of the total volume of their production. The common constraints faced by the farmers was lack of knowledge and technical know-how, maintaining male and female kiwi plant ratio, lack of recommended package of practices in the orchard, marketing problems etc.
358.	Consumer behaviour of tourists for agriproducts in Meghalaya".	Mr. Kunchum Suresh Krishna	2018	 Among all the agricultural products available at the stalls or with the vendors pineapple was most preferred by the tourists and the translation of first preference to actual purchase was 94.49%. About 51.36% felt taste was an 'extremely important' attribute while making purchase decision and they either agreed or strongly agreed that they buy a product for its nutritional value, followed by freshness and organically produced. WTP was highest in case of pineapple (42.47% to 43.13%), followed by orange (28.36%), bamboo pickle (14.28%), banana (9.21%) and chilli pickle (9.09%).
359.	Valuation of alder based farming system in Nagaland	Mr. Limasunep Ozukum	2018	 The farmers at Khonoma practiced total 23 combinations of different crop mix but three crops mix were followed by majority of the farmers. Most of the respondents cultivated potato, naga garlic as sole crops or potato with maize as intercrop. The estimated value of the goods (biomass)

		<u> </u>		
				provided by the system was `3.86 lakh/ha. • The total value of the services provided by the alder trees at Khonoma ranged from `30521.59/ha to `35171.82/ha.
360.	Socio-economic study on Mahatma Gandhi National Rural Employment Guarantee Act (MGNREGA) in Ri-Bhoi district of Meghalaya	Mr. Shaikh tabrez	2018	 The income and expenditure on some food and non-food items of beneficiaries had increased significantly after working under MGNREGA. The difference in monthly income between beneficiaries and non-beneficiaries was statistically non-significant. But the differences in expenditure of some food and non-food items were significant. The assets of beneficiaries had increased after MGNREGA. No records entered in job card, demanded 100 days of work is not provided under the scheme in a financial year, inappropriate work season, less work related to soil conservation and land development and less wage rate were the major problem faced by all the participants
361.	Value Chain Analysis of Dairy Industry in Nagaland	Ms. Sedeno Chale	2018	 Majority of the respondent dairy farmers were concentrated in the medium herd size category. The milk productivity was lower for local cows than crossbred cows; therefore, the local cows were kept mainly for meat purpose. The major value addition was done only in Channel-Ill, at the processor cum dairy cooperative's level. The study also revealed that some margin or profit was gained by the stakeholders at every stage of each channel.
362.	Economics of Tea cultivation in Tirap district of Arunachal Pradesh	Mr. Nowang Wangnow	2019	 The compound annual growth rate for area, production and productivity of tea in Arunachal Pradesh showed a significantly positive trend with 9.61 per cent, 21.20 per cent, and 10.56 per cent annual growth respectively from 2000-2001 to 2014-2015. The operational cost was increasing from the beginning year up to the peak harvesting year because as the plantation mature the operational activities also increase such as pruning and weeding. The total variable cost was found to be higher than the total fixed cost. The share of hired labour in total variable cost was the highest component. Likewise, family labour was the most important component contributing to the total fixed cost.

363.	Performance of Agriculture in Sikkim: Assessing the satisfaction of farmers.	Ms. Minam Gamoh	2019	 The Gross State Domestic Product (GSDP) of Sikkim at constant (2011-12) prices was ₹1509525 in 2016-17. Agriculture sector contributed 7.10 per cent to the total State GSDP. The agriculture GSDP increased in between 2011-12 to 2016-17 at constant prices but the share of the agriculture sector to total GSDP decreased. The net sown area decreased by 18.95 per cent but the gross sown area increased by 9.21 per cent in between TE 1994-95 and TE 2014-15 which was due to the increase (11.36%) in cropping intensity (176%) in 2014-15.
364.	Economic analysis of milk production in Ri-Bhoi district of Meghalaya	Mr. Evans Kiprono Kemboi	2020	 Milk production per household was 23.59L and about 83.35% quantum of milk was disposed of through the cooperative society. The yield gap present in the study area was very high, estimated to be 6.20L (91.06%) per day out of which 11.76% was yield gap I and 79.30% was yield gap II. The size of the animal shed, experience, price of concentrate and labour were the important factors influencing yield gap in milk
365.	Economic analysis of milk production in East Khasi Hills district of Meghalaya	Mr. Jabir Ahmed	2020	 The average milk production in the study area was 39.81 L/day/household, out of which 96.66 per cent was marketed by the cattle rearers. Substantial difference in milk yield was noticed at experiment station and farmer's farm. Total yield gap was 49.62 per cent, where yield gap-I is 6.52% and yield gap-II is 43.10%. The experience in dairy farming, distance from farmer's farm to research station, contact with extension personnel, price of concentrate and human days allocated for dairying were significant factors influencing yield gap.
366.	Economic analysis of Cabbage production in East Khasi Hills District of Meghalaya	Ms. Kota Karuna Sri	2020	 The compound annual growth rate was found positive for the all the districts in Meghalaya and the CAGR for area, production and productivity under Meghalaya was found to be (2.59%), (3.01%) and (0.4%). The CAGR for area, production and productivity in East Khasi hills was (0.83%), (1.6%) and (0.84%). The reasons for the low yield growth rate might be lack of latest agricultural technical know-how, pest infestation etc The total costs (TFC+TVC) in Zaid season was

				found to be ₹52129 and the productivity was found to be 58 quintals and gross income was ₹84578.50 and net returns was ₹32449.50 with the B-C cost ratio 1.60 and operating ratio was 54% when compared to Zaid season, winter seasons cost of cultivation was found to be low viz., ₹47834.42 and productivity was found to be 68 quintals with the gross income ₹88400, net returns was ₹40565.58. B-C ratio was found to be 1.84 with the operating ratio 47%. It was found that cabbage was economically profitable and viable and study reveal that winter cabbage was more beneficial.
367.	An evaluation of the public distribution system in Kamrup (Rural) district of Assam	Mr. Rizwan Ahmed	2020	 To understand and assess the status of functioning of PDS in Kamrup (Rural) district of Assam To estimate the impact of PDS in calorie intake of BPL households To estimate the various parameters for effective participation in PDS and identify the problems faced by households due to PDS
368.	A study on marketing pattern of potato in Meghalaya: Special reference to East Khasi hills district	Mr. Mumadi Rajavardhan	2020	 In the period 2005-06 to 2012-13 area used to grow potato highest positive growth rate was seen in South Garo hills (4.60%) followed by West Garo hills district (3.28 %). Among all the districts highest production growth rate was observed in West Garo hills district which recorded as 3.76 per cent. From 2013-14 to 2017-18 East Jaintia hills district recorded highest area growth rate to be 10.61 per cent during study period. Highest marketing cost for summer potato and winter potato observed in channel-I due to presence of more marketing actors present in these channel followed by channel-II. In channel-III the producer's share in consumer's rupee was higher than other channels due to absence of marketing middlemen. It was reported in both summer potato and winter potato.
369.	Economic analysis of milk production in West Khasi and South-West Khasi Hills district of Meghalaya	Mr. Mridupaban Das	2020	 Average milk production was 3.68 L/day/household and the decisive agency in disposing surplus milk was middlemen/vendors who dispose milk of about 76.71 per cent household. The TYG was 2.13 L/day/cow (2.21 L/day/cow in WKH and 2.01 L/day/cow in SWKH,

				respectively) and the TYG percentage was 244.83 per cent which comprises of yield gap-I (196.55%) and yield gap-II (48.28%) in the study area. • Experience in dairy farming (years) (p<0.01), scientific cattle shed (p<0.01), vaccination (p<0.01), education of the family head (p<0.05) and human days allocated for dairy (hours) (p<0.10) were the factors that significantly impacts the yield gap.
370.	Value chain analysis of Pork in Meghalaya: a special reference to Khasi Hills region	Mr. Richu Mathew Sunil	2021	 Channel-I was found to be most preferred among the pig farmers because of the high price availability among the marketing channels for live pig. Among the marketing channels for pork, Channel-I was preferred by the consumers owing to its easy accessibility. The net benefit available to the producer was estimated to be higher in value-added products when compared to the fresh pork.
371.	Value chain Analysis of Fish in Meghalaya with special reference to Khasi Hills district	Ms. Sumithra.	2021	 In the marketing of fish, Value chain-1 (Fish farmer- Consumer) was found to be a most efficient one but it is not practically possible in case of large scale production. Value chain-2 was found to be a next efficient value chain which need to be strengthen and popularize to increase the producer's share in consumer's rupee. Value added products of fish have relatively higher price than fresh one in the market.
372.	A study on Pradhan mantri Kisan Samman Nidhi (PM Kisan) in Ri-Bhoi District of Meghalaya: An Economic Analysis	Palnati Naveen Reddy	2021	• From the socio-economic features of the beneficiary respondents, it was observed that were the average age of the beneficiary farmers was 47 years; average household family size was 5-6 members; Literacy rate was 74 per cent; average farm size was 0.99 ha. From the primary data, the beneficiary respondents were 91, out of which 93 per cent of the farmers received PM-KISAN scheme amount timely in

	1	1	1	
				three installments and the rest later.
				From the scheme, amount received
				by beneficiary farmers was ₹6000
				per year, however only about 66
				per cent was used for agriculture
				purposes and the rest 34 per cent
				for non-agriculture purposes during
				Agricultural Year 2020-21. Among
				agricultural purposes, 92.3 per cent
				was used for input purchase by the
				beneficiary farmers and the rest for
				hiring labour.
				• From regression coefficients of
				independent variables it was
				observed that the variables like,
				Education shows positive
				significance implied that better the
				educational qualification, better the
				utilization of the scheme amount.
				The other variable that showed
				significance but negatively was
				family size.
				Net returns of beneficiary farmers
				were greater than that of non-
				beneficiary farmers, just like cost
				of cultivation and gross returns.
				The average net returns of
				beneficiary farmers were ₹25298.6
				which was greater than that of non-
				beneficiary farmers i.e., ₹23095.22
				during Kharif 2020-21. The
				percentage difference of 8.71 per
				• cent and an absolute difference.
	1		DISCIPLIN	NE: ABM
373.	Value chain of	Ms. Amenri	2019	• The raw materials used by the industry were
	Agro Products in Manipur- A Case	Thongam		especially available within the state. The
	study			industry needs 1 metric ton of raw materials
				per dayBut sometimes <i>King Chilli</i> were imported from
				outside the state like Nagaland and Assam
				Other materials like packaging materials,
	<u> </u>	<u> </u>	1	5 mil marting me parting materials,

	1	T	1	
				spices, oil, and sugar are also imported from outside the state.
374.	Value chain analysis of honey in Meghalaya-A case Study	Ms. Missal Elbe Ch Momin	2019	 The forward linkage of the study comprised of the market distribution and the consumers. The processed honey was reassigned to the warehouse where the distributor makes an attempt and delivers their product to the super premium retail stores on order basis and the consumers are those with high purchasing power, hotels and restaurants and wellness retail outlets. BEE Natural over the years has changed the lives of the people associated with it through social responsibility, economic equity and environmental sustainability
375.	A study on value chain of tea in Manipur	Mr. Hijam Thoiba Meitei	2019	 About (60%) of the total area under lemongrass cultivation is in Chingnungkhok, Imphal East. The maximum percent of the establishment cost of lemongrass production is spent on buying planting material (28.04%). The maximum percent of operational cost for lemongrass production is spent on harvesting (59.41%).
376.	Tripura Forest Development & Plantation Corporation & Rural livelihood Security of Tribals: A study of Corporate Social Responsibility	Mr. Oliver Uchoi	2019	 The maximum (65.83%) of the respondents were earning 1,00,000 and above per annum in the study area because It has been observed that the higher income in rubber was due to the large and medium land holdings among the respondents. The other sources of income were from MGNREGA (100%), Construction works (58.33%), rubber fire woods (10%), rice (8.33%) and livestock (20.83%). The success stories of Bonita tripura and Sundar mohan tripura shows that after getting scheme from TFDPC their life were well improved and had made a strong livelihood income compared to early days as there were no sources of income.
377.	Scope of value chain Management of Agri-products in Meghalaya	Ms. Iarasa Lakiang,	2019	 Urlong Tea Integrated Village Cooperative Society needs a decent network based supply chain to run them year long so that it may be set as an example of Buyer driven model through assuring quality product and to be converted into a business model. Mutual trust is the key factor for developing a strong social capital within the tribal community through self help group was an exemplary of

		T	1	
				 success case study in value chain analysis. Overall proposal is to develop social capital via social networks for the success of any kind of business
378.	Study of Machal Spices Industry in Manipur	Mr. Thoudam Umashankar Singh	2020	 The average production of the company was approximately 6,100 kg per month and average cost of processing was approximately ₹3,68,500 per month, with an approximate average gross return of ₹13,13,400 per month and the Benefit Cost Ratio of the company from selling of processed spices was 1.36. The values added per kg of Machal powder was ₹60.17 giving the net return of ₹81.83 for this particular product, values added per kg of Machal chilli powder was ₹60.67 and the net return is ₹89.33, values added per kg of Machal besan powder was ₹28.25 with a net return of ₹3.15, values added per kg of zeera powder was ₹59.73 giving ₹15.27 as net return of this product. The company do not have much challenges, they can adjust it from time to time but they have some major challenges like the brand imitation, market competition, shortages of electricity, transportation and road problems, etc.
379.	Value Addition in Cashew Nut – A case study of B.R. Industries in Meghalaya	Mr. Albert S. R. Sangma	2020	 The average production of the industry was 1200 kg of finished product per month and the industry consumes around 4800 kg of raw cashew in order to produce 1200 kilogram of processed nuts. The average cost of processing of cashew was approximately ₹1,61,232 per month and the average gross return is ₹7,19,400 per month and the net return per month is ₹1,26,168. Therefore, annual net return of the industry is approximately ₹15,14,016. The industry supply 60 percent of processed nuts to Assam and 40 percent was consumed in Meghalaya itself. In Assam it is supplied to Guwahati city and Dhubri while in Meghalaya it is distributed to the local retailer and whole seller of Phulbari, Tura, Shillong, Baghmara and Williamnagar.
380.	A study of Lambu Subu Food and Beverages in	Ms. Dogin Mamung Anjalee	2020	The kiwis were brought to the processing center after procuring it from the local farmers

final p • The fi	100 per kg and also from the owners' orchard. After the fruit was brought to the ssing unit, it was weighed and cleaned for val of undesirable matters. Then, the ssing starts, which involves fermentation, ag, fining, filtration, cold stabilization,
12,03,9 13,16,5 wine v 74,089 was ₹ of kiw 3333 b the firm	ng, capping, labelling so as to obtain the product, kiwi wine. Irm has a gross return of ₹ 37,49,500 per of kiwi wine with total processing cost of ₹ 950 per month and Net return was ₹ 550. The processing cost of 1 quintal of kiwi was ₹ 8889 having returns per quintal of ₹ 0 so, the value addition of 1 quintal of kiwi 8889. Therefore, in a month 135.4 quintals wis were used for producing approximately pottles of kiwi wine. The constraints faced by the market competition from the local wine seller, lack of awareness of the product

PH.D. THESIS

	Natural Resource Management (NRM)							
S.	Title of the thesis	Name of the	Major	Year of	Outcome (2-3 lines)			
No.		student	subject	completio				
				n				
Disci	pline: Agronomy							
Class	ification/category: C	ropping system (l	Nutrient man	agement)				
1.	Integrated nutrient management in vegetable pea — maize cropping sequence	Mr. Samborlang K. Waniang	Agronomy	2018	Dual seed inoculation of vegetable pea+FYM@5tha-1 produced high yield of tender green pods, net return and B:c ratio besides leaving more residual N to succeeding maize during both the years. Furrow application of 0.5t ha-1 lime with all three RDF levels has a positive impact on soil properties measured as reduction in AL toxicity, increase in soil pH, population and activities of soil microorganisms and enhanced availability of N,P,K and Ca in soil			
2.	Estimation of Plant Biomass and Agronomic Management in Jhum Cycle of North East India	Hari Charan Kalita	Agronomy	2015	Burning and mulching had differential influence on weed diversity in <i>Jhum</i> ecosystem. Fallow cycle of 10 years optimized the yield under mixed and relay crop			
3.	Seed Priming of	Yanglem Sofia	Agronomy	2017	Seed invigoration technique has increased the			

4.	Pea (Piscum sativum L.) and Residual Soil Moisture Conservation in Rice (Oryza sativa L.) Fallow Evaluation of Urine as an Alternative Fertilizer Source for Crop	Devi Sanjebam Dayananda Singh	Agronomy	2017	agrophisiological responses of pea under abiotic stresses and normal condition. H ₂ O ₂ is the cheapest source of seed invigoration after hydropriming. Urine is the potential alternative source of plant nutrients. It can save 50-75% of non renewable inorganic and organic source of plant nutrient resources.
5.	Production in North East India Assessment of	Mr.	Agronomy	2021	• To prevent 5% yield loss the critical periods in
	Weed Diversity and its Impact on Crop-Weed Interaction in Upland Rice-Rapeseed Cropping System under Residue Mulch	Premaradhya. N			both the years (2016 and 2017) of study were 16 – 66 and 15 – 63 DAS; whereas, with 10% relative yield loss the critical periods were 23 – 62 and 21 – 61, respectively • Spatial analysis of the evenness of the weed species community permits identification of field areas with a strong dominance of weed flora from one or several invasive weeds and, accordingly, the present analysis would be useful in Optimum weed management practices in upland rice along with appropriate residue management practices followed by adoption of no till in succeeding winter crop toria is a recommendable option for enhancing energy use efficiency and economic returns in the NER of eastern Himalayas, India
6.	"Development of Critical Nitrogen Dilution Curve and Simulatingits Effects on Rice- Rice System under Climate Change"	Mr. Chandrabhan Bharti	Agronomy	2022	 Nitrogen dilution curve based on plant dry matter for rice are kharif rice Nc = 3.18 PDM^{-0.91} and boro rice Nc = 5.80PDM^{-0.84}), it can be used for nitrogen scheduling. 150 kg N ha⁻¹may be applied in 3 split application (50% as basal + 25% at45 DAT and 25% at 60 DAT as top dressing) produced higher rice yield
7.	"Studies on the suitability of potato in rice fallowsunder valley land of Meghalaya"	Mr. Ganesh Narayan Gurjar	Agronomy	2022	 Sowing of potato crop on 5th November was responded significant in terms of higherthermal response and tuber yield as well as higher monetary returns in rice-potato system. Application of straw mulches not only increased the crop productivity but alsoenhanced in the conservation of natural resources through improve in soil chemical and biological properties with reduced water losses.

Disci	oline: Soil Science and A	gricultural Che	emistry		
8.	Effect of amelioration practices on soil productivity of coal mine affected lowland fields	Markynti.S. Lyngdoh	Soil Science and Agricultural Chemistry	202	The coal mine affected soils are categorised to two such as moderately pH (4.40) (i.e. Moonlakhepand) and low pH (3.36) (i.e. Ladrymbai). The identified best treatment in such both the soil is: Compost @10t/ha+ Lime @ 500kg/ha+ migraphial consortium.
9.	Soil organic carbon mapping and carbon sequestration of hill agro-ecosystems of Ri-Bhoi district	Kabir Debbarma	Soil Science and Agricultural Chemistry	202	 Rabi crop is dominant in 0-1% slope with 536.54 ha, kharif crop in 1-3% slope with 1217.85 ha, Jhuming activity dominant from 8-30% slope with 7040.12-89.46.28 ha and forest cover 6664.92 ha with minor agricultural activity in slope 30% and above. The ordinary kriging exponential was the best model for the spatial soil org. Carbon mapping. The soil organic carbon stock was found in the following order as forest (39.48 Mg/ha/year)> current jhum (38.58 Mg/ha/year)> rabi(37.79 Mg/ha/year)> abandoned jhum(37.46 Mg/ha/year)> kharif (37.11 Mg/ha/year)>both season (36.20 Mg/ha/year). The carbon sequestration was in the following order as the rabi crop (11.98 Mg/ha/year) > cropping both kharif-rabi season (6.10 Mg/ha/year)> abandoned jhum (5.08 Mg/ha/ year)> kharif (3.55 Mg/ha/
10.	Hyperspectral spectroscopic study of soil properties in acid soils of North-East India	Mr. Chandan Goswami	Soil Science and Agricultural Chemistry	202	year). (i) The highest and lowest reflectance values were recorded in soils of kharif crop (0.10 to 0.62) and deciduous forest (0.09 to 0.49) in Alfisols, evergreen forest (0.10 to 0.62) and current jhum (0.09 to 0.51) in Inceptisols, and double crop (0.09 to 0.62) and deciduous forest (0.09 to 0.54) in Ultisols. (ii) The suitable wavelengths (bands) were identified for pH (400 to 657 nm, 1388 to 1417 nm & 2149 to 2321 nm), Org. C (504 to 661 nm, 1905 to 1953 nm & 2143 to 2390 nm), N (495 to 781 nm, 1395 to 1421 nm, 1901 to 1949 nm & 2149 to 2316 nm), P ₂ O ₅ (531 to 654 nm, 1384 to 1419 nm, 1900 to 1982 nm & 2145 to 2364 nm), K ₂ O (400 to 576 nm & 2145 to 2305 nm), Zn (400 to 576 nm, 734 to 854 nm & 2147 to 2297 nm),

					sand (481 to 671 nm, 1379 to 1417 nm, 1828 to 1930 nm & 2148 to 2296 nm), silt (446 to 678 nm, 1357 to 1418 nm, 1881 to 1924 nm & 2156 to 2293 nm) and clay (446 to 678 nm, 1357 to 1418 nm, 1881 to 1924 nm & 2156 to 2293 nm).
11.	Phytoremediation of Heavy Metal Polluted Soils of Coal Mine Areas of Jaintia Hills and Determination of Critical Limit of Prosphorus for Maize (Zea mays L.)	Euwanrida Adleen Shylla Lyngdoh	Soil Science and Agrilcultural Chemistry	201	Sunflower is adjudged as superior phytoremediating crop in comparison to Asparagus for accumulating more heavy metals form coal mined heavy metals polluted soil. Critical limits of available P for getting maximum/optimum production of maize from heavy metal polluted soils of coal mined areas were established as 21.90 mg/kg for sunflower remediated soil, whereas 27.00 mg/kg for asparagus remediated soil.

Ph.D. Theses

Sl.	Title of the thesis	Name of the stud	lent	Major	Year of	Outcome					
No.	Title of the thesis	Name of the stud	subject		Outcome						
110.				passing							
DIGG	1. Rice										
	DISCIPLINE GENETICS AND PLANT BREEDING CLASSIFICATION/CATEGORY: GERMPLASM CHARACTERIZATION AND EVALUATION										
			1								
12.	Crossability Embryo	Mr. TalomDabi	GPB	2019		and pollen studies revealed CAUR1					
	rescue and genetic					g as the best combination among					
	diversity studies in					etal crosses. Among wide crosses,					
	Oryza					ryza rufipogon was the best.					
					Genetic dive	rsity study of 43 genotypes using					
					31 SSRs revo	ealed a total of 113 alleles.					
CLAS	SIFICATION/CATEGOR	Y: ABIOTIC STRE	SS TOLERA	ANCE							
13.	Marker assisted	Mr. Shiva	GPB	2017	Marker ass	isted selection for transgressive					
	selection of	Kumar K			segregants de	erived from two different crosses in					
	transgressive					favourable alleles for P deficiency					
	segregants for high					gence tolerance under acidic low					
	yield under acidic soil					s yielded high yielding F ₄ progenies					
	conditions					for Sub1 locus and showing					
						e tolerance phenotype. Also high					
					•	progenies homozygous for PUP1					
						showing P deficiency tolerance					
						vere identified based on field and					
					hydroponic e						
CLAS	 SIFICATION/CATEGOR	Y· BIOTIC STRES.	S TOLERA!	NCE	ny dropome e	variation.					
14.	Genetic Analysis of	Mr. Ashim	GPB	2018	Genes/loci I	Pi54, Pi2, Pib, Pi2/9 locus, Pi5,					
17.	Leaf and Neck Blast	Debnath	012	2010		ocus and $Pi20(t)$ were					
	Resistance in Rice	Beendin			-	th leaf blast resistance in rice under					
	10010tuilee ili 1000					ditions. Genes <i>Pi5</i> and <i>Pi54</i> were					
						associated with leaf blast resistance					
						ral population and biparental F ₂					
						Piband $qPbm$ showed some degree					
						n with neck blast resistance in					
					naturai popu	lation. The study indicates that leaf					

					and neck blast resistance is primarily governed by dominant alleles of multiple genes that interact with each other to impart resistance.
	IPLINE: PLANT MOLI			BIOTECI	HNOLOGY (PMB)
	Identification of novel alleles for acidity tolerance in rice			2015	Rice seedlings screened under low P condition for 15 and 25 days revealed LR 23 and LR 26 as tolerant genotypes. Genotypes like UR 5 and UR 29 were identified as tolerant when screened under 0.54 mM of Al ³⁺ for 5 days based on basis of percentage increase in root and shoot biomass. Pot experiment conducted for 25 days for aluminium toxicity tolerance (0.54 mM of Al ³⁺) led to identification of LR 39, LR 56 and LR 13 as tolerant genotypes. Field screening for P deficiency and iron toxicity tolerance identified LR 11, LR 15, LR 18 and LR 26 were tolerant to iron toxicity conditions. Novel alleles for genes reported for low P, aluminium and iron toxicity
16.	Understanding molecular biology of acidity tolerance in rice: A case study of phosphorus deficiency and iron toxicity tolerance in Shahsarang	Mr. Sudip Das	PMB	2016	tolerance identified from NE rice germplasm. Genes reported for iron deficiency tolerance can be potential targets for enhancing rice production under P deficiency and iron toxicity field conditions. Maintaining Fe homeostasis under Fe toxicity and P deficiency conditions could be vital to better performance under poor soil conditions.
17.	Molecular mapping for low light intensity tolerance in rice	Mr. Suvendhu Sekhar Dutta	PMB	2017	Key traits affected by low light intensity identified as Panicles per plant, Harvest index Spikelet fertility, grain yield. Tolerant genotypes for low light intensity identified: Megha rice 1 Mahisugandh, Danteshwari, Pusa Sugandh 5 Five HvSSR markers associated with low ligh intensity tolerance identified.
18.	Role of <i>Oryza sativa</i> G2-like transcription factor family in low P tolerance in acidic soil adapted rice genotypes	Mr. Karma Landup Bhutia	PMB	2019	New members of G2-like transcription factors identified for role in low P tolerance. Chromosome 2 of rice identified as a novel region imparting higher yield under lowland acidic soils.
			2.	 Maize	
DISCI	PLINE GENETICS AND	PLANT BREEDIN			
<i>CLAS</i> : 19.	SIFICATION/CATEGOR Divergence and Combining Ability	Y: GERMPLASM (Mr. Naveen Kumar	GPB	2019	ON AND EVALUATION A total of 111 lines developed from seven different landraces employing full sib-mating

		T	•		
	Studies in a Set of				from generations one to four and selfing in
	Inbreds Developed				generations five and six respectively were
	from Maize Landraces				studied for heterotic grouping. Model and
	of North Eastern Hill				distance-based clustering approaches combined
	(NEH)				with the presence of phenotypic variability in the
					lines for yield traits followed by a preliminary
					partial diallel analysis indicated the existence of
					distinct heterotic groups for landraces of North
					East India.
			1. Ot	hers	
DISCI	PLINE GENETICS AND	PLANT BREEDIN	VG		
CLAS	SIFICATION/CATEGOR	Y: GERMPLASM (CHARACTI	ERIZATI	ON AND EVALUATION
20.	Evaluation of lentil	Mr. Sapam	GPB	2017	A set of 150 evaluated under upland acidic
	(Lens culinaris ssp.	Rajesh Kumar			conditions and crossing between contrasting
	CulinarisMedikus)	Singh			genotypes attempted. IPL-325, PL-04, LRIC
	germplasm under low-				
	input acidic soil				560812, IPL-322, PL-117, SKUAL-2-96, PL-4
	conditions of North				and PL-101 were found to be performing best
	East India				under the conditions with respect to pod yield,
					root and shoot biomass.
	IPLINE: PLANT MOLI				, ,
	SIFICATION/CATEGOR				
21.	Crossability, embryo	•	PMB	2019	Genetic diversity revealed two distinct clusters.
	rescue and genetic	Cherian			Polymorphic information value ranged from
	diversity studies using				0.3119-0.6836. <i>Glycine soja</i> was successfully
	molecular markers in				crossed with Bargg, Kalitur and Alankar and
	cultivated soybean and				hybridity proved with marker Satt396.
	its wild relatives				
	SIFICATION/CATEGOR				
22.	Isolation and	Mr. Satish	PMB	2017	Two transcripts, 00220 and 11572 were
	characterization of	Kumar Verma			identified as seed specific pigeon pea transcripts.
	tissue-specific				While 00220 belongs to MADS transcription
	promoter from pigeon				family, 11572 belongs to TALE transcription
	pea				family, TAIL PCR approach led to identification
					of 228 bp 5' UTR (untranslated region) of 00220
					transcript. Upon sequencing of final tertiary PCR
					PlantCARE database revealed presence of
					different motifs such as ARE motif, three
					CAAT-box, G-box, GT1-box, two Skn-1, three
			1	<u> </u>	TATA-box and three unnamed motifs 1, 3 and 4.
YEAR	R JANUARY 2020- MAY	2022			
23.	Genetic Analysis of	Ms. Bharati Lap	Genetics	2021	Transgrassive segregants that had better viel them
	Grain Characteristics and		and Plant		Transgressive segregants that had better yiel than
	Blast Resistance in		Breeding		the parents and with good quality traits of aroma,
	Biparental Crosses				colour and blast resistance identified were
	1	1	1	1	ULRC46-326(4), ULRC43-67(2), ULRC43-
	Involving Coloured Rice				
	Involving Coloured Rice of North-Eastern Region (NER)				546(1), ULRC48-379(2), ULRC43-316(1), ULRC34-202(2)-1, ULRC34-242(4)-2,

24.	Genetic Analysis and Marker Trait Association for Powdery Mildew Resistance in Mutagenized and Biparental Population of Pea (<i>Pisum sativum</i> L.)	Ms. Reginah Pheirim	Genetics and Plant Breeding	2022	ULRC34-87(3)-5 AND ULRC34-195(4)-2. The study found evidences for existence of novel alleles for reported genes and novel loci for grain colour that can be elucidated through fine mapping and allele specific sequencing. Mutant line M-144 was identified as promising line having both high seed yield and moderately resistant to powdery mildew. Among biparental population, MP-5-2 and MP-119-2 were identified as promising genotypes having superior performance with the combination of desirable characters viz., dwarf and powdery mildew resistance from both the
					A5 markers was validated for use in identification and selection of powdery mildew resistance.
Ph.D.	(PLANT PATHOLO	GY)			
25.	Management of Penicillium Rot of Khasi Mandarin (Citrus 268 eticulate Blanco) by Using Native Bacillus subtilis Isolates.	Ms. Janshame Tariang	Plant Patholo gy	2019	• In Khasi Mandarin, post-harvest application of <i>Bacillus subtilis</i> as liquid formulation by immersing the fruit before storage and sending for sale to market was found the most effective one with minimum <i>Pennicillium</i> rot incidence even after 30 days of storage. The two <i>Bacillus subtilis</i> strains <i>viz.</i> , Bs 167 and COB5Y1 were identified as potential bio-agents, against post-harvest disease
26.	Bio-efficacy of <i>Trichoderma</i> Formulation Against Damping-off Caused by <i>Pythium</i> spp. and <i>Rhizoctonia solani</i> Kuhn. on Tomato (<i>Solanum lycopersicum</i>).	Ms. Markidahun Biam	-do-	2019	 Penicillium rot of Khasi Mandarin. Trichoderma hamatum and T. harzianum were identified as the dominant Trichoderma species associated with different habitats in Meghalaya. The Trichoderma isolates viz., TR55, TR66, TR122 and TR136 were found potential isolates against the damping-off caused by Pythium spp. and Rhizoctonia solani in Tomato.
27.	Characterization of Arbuscular Mycorrhizal Fungi and Endophytic Bacillus in Tomato Roots and their Antagonism	Ms. Nongthombam Olivia Devi	Plant Patholog y	2021	A total of 41 AMF species were recovered and identified from the 20 sampling sites from field soil. All the 41 AMF species isolated from field soil

	against Fusarium Wilt				were also recovered from trap culture inoculum along with an additional 6 species from trap culture soil. The result gives first image of tomato rhizospheric soils of Meghalaya to have good number of AMF species which can later be used as a consortium or single species to improve plant physiology, biodiversity of soil and overall productivity of tomato plants.
28.	Management of Rhizome Rot of Ginger (Zingiber officinale Rosc.) in Meghalaya	Mr. Maaragaani S. V. Satyanarayana	Plant Patholog y	2021	 The causal agents of the disease were identified as Fusarium oxysporum f. sp. zingiberi (Foz) and Fusarium solani Diverse rhizospheric microflora belongs to genus Acidovorax spp, Azohydromonas spp, Bacillus spp, Pantoea spp, Acremonium spp, Penicillum spp, Trichoderma spp. were found habituated with ginger in this region Soil amendment with organic manures such as neem cake @250kg/ha or mustard cake @100 kg/ha either with pre sowing treatment of rhizomes with hot water @50o C for 30 minutes or with T. neotropicale @5kg/ha were found effective, and the technology developed in the present study would serve as an economically feasible and effective integrated strategy for the management of rhizome rot of ginger.
29.	Evaluation of Biocontrol Potential of <i>Beauveria</i> bassiana (Balsamo) Vuillemin Against Major Rice Pathogens	Ms. Lipa Deb	Plant Patholog y	2021	 Beauveria bassiana isolates viz., Bb4, Bb16, Bb25, Bb44 and Bb53 were identified as potential plant disease antagonists against major phytopathogens of rice viz., Rhizoctonia solani, Bipolaris oryzae, Pyricularia oryzae and Xanthomonas oryzae pv. oryzae. B. bassiana isolates viz., Bb4, Bb16 and Bb44 were successfully established as an endophyte of rice.

30.	Investigation on Grey Leaf Blight Disease of Mango (Mangifera indica L.) in North East India	Mr. Tanmoy Das	Plant Patholog y	2021	 Field surveys conducted in 2017 against GLB, Out of 180 locations of North-East Indiam, 158 locations showed occurrence of the disease with a maximum GLB incidence of 64.21 per cent in Tripura. Among biocontrol agents <i>P. fluorescens</i> exhibited a highest per cent mycelial growth inhibition of 87.16 Bi-seasonal field experiments against GLB, revealed that carbendazim 12%+mancozeb 63% @0.2 per cent recorded the highest disease control (82.85 %).
-----	--	----------------	------------------------	------	--

Sl. No.	Thesis Tit	tles	Name of student		Year of completion	Out comes (2-3 lines)
		DISCIPL	INE: AGRIC	CULT	URAL EXTEN	SION
31.	A micro-level study on dimensions of emerging livelihood pattern of rural tribal youth in Tripura	Ms.Suchiradip Bhattacharjee	ota 2016	• Siz fac • No soc • Ma abi agi ina	vOreturn remune e of land holdin tors influencing significant gen- cio-personal cha ajor constraints lity, absence or cicultural secto	ce poor youths are engaged in erative sectors of occupation. ag and asset endowment are important occupational diversity der differences in socio-economic and racteristics of youth a identified were low risk bearing of veterinary facilities, turn-off of or to be non-remunerative one, ional training, reduced mobility and s.
32.	A study on impact assessment of the employment and livelihood linked programmes in Manipur	Ms. Khumukchan Stina	2016	for population of the populati	ound increasing ercentage of wo erson days gene to significant characteristics ave contributed espondents by 3 fon availability of ages, under payind worksite facing the beneficiarier the beneficiariocess in getting	though the demand for work was and the fund utilisation high, the rk completed was low. The number of rated was also low ange was observed in income level of after MGNREGA, however, SGSY a significant increase in income of the 9.64%. of 100 days of work, late payment of rment of wages, non availability of tools lities etc were the constraints perceived its under MGNREGA. Constraints as ries under SGSY were complicated a credit, long time period in getting of the program not read to the needed
33.	Jhumias of	Ms. Punitha P	2017	• An	alysis of live	lihood diversification revealed that

34.	Manipur in North-Eastern India: A Livelihood Analysis	Alethea Dympep	2018	majority (60%) of respondents in Watershed Development Project in Shifting Cultivation Area (WDPSCA) found to exhibit low level of livelihood diversification, where as in Non-WDPSCA majority (49.37%) of respondents found to exhibit medium level of livelihood diversification. • Jhum income contributes the highest to the total farm income both in watershed Development project in shifting cultivation (WDPSCA) and Non-WDPSCA. The banana crop contributes the highest source of fruits income with an average income of Rs.37227 in Tamenglong district. • Lack of market access was the foremost infrastructural constraint expressed by the respondents of WDPSCA and Non-WDPSCA. Primary livelihood activities not leaving enough time to pursue diversification strategies followed by inadequate experience in expected livelihood activity and lack of role model entrepreneur in my village were the social constraints expressed in Non-WDPSCA. • The promotion of location specific livestock activities combined with common market place for cluster of villages and agri-business activities Banana fibre extraction in Tamenglong district for Jhumias need to be promoted by state government. • On estimating a structural equation model of the
	Agricultural Stakeholders on Climate- Smart Agriculture in Meghalaya: A structural equation Modelling			standardized parameters <i>viz.</i> , 'CSA Performance', 'Maladaptation, Risk perception of Climate Change', 'Perceived Adaptive Capacity' and 'Subjective Norms' through Confirmatory Factor Analysis, the study revealed that the exogenous variable 'Risk perception of Climate Change' was positively influencing the endogenous variable 'Maladaptation' at 5% level of significance. While the exogenous variables <i>viz.</i> , 'Perceived Adaptive Capacity' and 'Subjective norms' were positively influencing endogenous variable 'CSA Performance' at 1% and 5% level of significance, respectively. • The most prioritized constraints expressed by the farmers was the lack of support from government on adapting the CSA practices.
35.	Livelihood Security of Farmers in	Ms. DeepaThangjam	2019	• From the result of the present study, it could be

	Meghalaya under Tribal Sub-Plan: A Result-Based Evaluation			concluded that the performance of TSP has some impact on securing the livelihood and in empowering the respondents. • The findings showed that overall crop diseases and pest infestation ranked the most serious problems followed by cost and timely availability of inputs, marketing problems, climate risk and uncertainty, limited availability of skill training, livestock management, and post-harvest management. The result provides an opportunity for the existing program to consider and intervene towards the most important issue faced by the farmers in the region. This not only serves importance to existing program but also provides a background for policymakers for future interventions. The prime focus on the most need-based issue will help policymakers while introducing any kind of agriculture and rural development program/project.
36.	Implication of mobile phone Applications in Farming by Tribal Rural Youth of Meghalaya	Mr. TermaricOinam	2019	• For 'Mobile Phone Service Reliability' it could be reported that more than half of the respondents (67.08 per cent) had expressed medium level of mobile phone service reliability, followed by 18.75 per cent who opined that mobile phone services are highly reliable and only 14.17 per cent of the respondents expressed there is low mobile phone service reliability. 12. As far as 'Money Spent on Mobile Phone Monthly' is concerned it was known that more than half of the respondents (55.42 per cent) had medium level of money spent monthly (Rs. 101 - 200) on mobile phone applications and a quarter of the respondents (25.00 per cent) had high (Rs. 200 and above) money spent on mobile phone applications and only 19.58 per cent of the respondents had low level (less than Rs. 100) of money spent on mobile phone applications.
37.	Organisational Climate and performance of Krishi Vigyan Kendras in Meghalaya	Mr. Sao EvalwellDkhar	2019	 To study the aspects of organisational climate as perceived by employees of the KVKs. To measure the organisational performance of different KVKs over the years. To study the clienteles' satisfaction regarding services of the KVKs. To gather suggestions for improving the services and outputs of the KVKs.

38.	Understanding the technological information Network in diffusion of Improved Rice varieties in Manipur	Ms. Jyothi SSP.	2019	 To identify the key stakeholders in the diffusion of CAU Rice varieties and understand their role and interrelationships To map the social networks of rice farmers and determine their degree of participation in disseminating CAU Rice varieties among the peer groups To study the effect of network variables on the innovation adoption-diffusion process of the farmers To identify the constraints faced by the stakeholders for effective linkages and farmers in accessing technology through their social networks and suggest suitable policy measures
39.	Social Simulation on Assimilation of Climate Smart Agricultural Practices in North Eastern Hill Region of India	Ms. M. Victoria Devi	2020	 In the study a total of thirty eight (38) CSA Practices which was suitable for the farmers of the selected Climate Change vulnerable districts in the three states had been identified. The identified CSA Practices were further categorized into six domains as: (1) Nutrient Smart CSA Practices, (2) Water Smart CSA Practices, (3) Soil Smart CSA Practices, (4) Carbon Smart CSA Practices, (5) Energy Smart CSA Practices, and (6) Knowledge Smart CSA Practices were established. The study could endeavour to identify the CSA Practices by interpolating the scores with respect to three pillars of CSA viz., Adaptation, Mitigation and Food Security as identified by FAO, 2010. As the Assimilation Gap of CSA Practices by farmers at present is alarmingly very high regardless of the availability on basket of potential CSA Practices. The barriers faced by extension specialists and farmers need to be examined and dealt seriously at ground level so that the hurdles are overcome by way of tripartite participation of (1) Scientific personnel of agriculture and allied disciplines, (2) Farming community, and (3) Decision makers who are in politics and executive bureaucrats of the respective state in particular and NEH region in general.
40.	Modeling e- learning for Climate-Smart Horticulture on High Value Horticultural Crops of Arunachal Pradesh: A Quasi-	Bai Koyu	2020	 In the study, there was a high extent of application of elearning. Asynchronous e-learning module on climate smart horticulture imparts significant increase in knowledge level of farmers. E-learning Self-Efficacy, Perceived Ease of Use and Facilitating Condition are themost important attributes for the e-learning module to have significant influence

	Experimental Approach.			onBehavioural Intention to Use.
41.	Role Performance of Village Councils in Implementation of Rural Development Programmes in Meghalaya	Mr. Ereneus K. Marbaniang	2022	 Majority of the village councillors had medium knowledge level about MGNREGA, PDS and ICDS programmes, respectively and similarly majority of them had medium participation level. Role perception index of VCs and SBs for MGNREGA was 79.29% & 90.40%, whereas it was 87.84% & 84.78% for PDS ,75.23% & 80.58% for ICDS, respectively. iii) Role performance index as perceived by the village councillors and scheme beneficiaries of MGNREGA was 80.79% & 65.01%, whereas it was 83.86% & 63.91% for PDS, 85.11% & 68.68% for ICDS, respectively with majority of them falls under medium level category of role performance for all the three programmes
		DISCIPLIN	E: AGRI	ICULTURAL ECONOMICS
42.	Economic analysis of pineapple in Manipur	Mr. Ningombam Anandkumar Singh	2016	 The growth of area, production and productivity for pineapple crops in the two regions <i>i.e.</i>, valley and hill region and as well as Manipur state as a whole were increased over the year and significantly positive. The value of instability index was found to be positive of area, production and productivity for pineapple crop in both the regions and as well as Manipur state as a whole which means that there was no stable growth but less riskiness for growing pineapple. The cultivation of pineapple was found to be profitable both the season, but it was more profitable in summer compared to the winter season
43.	An Empirical Study on Economics of Rice Production in Tripura	Mr. Pallab Debnath	2016	 The cultivation of rice in Tripura was observed to be quite profitable. The net returns were comparatively higher in small category than the marginal category. Among the factors of rice production, human labour, fertilizer and agrochemical had significantly positive effect on rice production in the state. Some of the production inputs, <i>viz.</i>, human labour and fertilizer should be increased while machine labour, seed, irrigation, manure and agrochemical should be decreased in Tripura in-order to make the resources allocatively efficient.
44.	Sustainable of rice farming in Manipur	Ms. L. Geetarani Devi	2016	• the sustainability of agriculture in Manipur. She

	: An Economic analysis			reported that Imphal West is the most sustainable district in the state. The hill districts were ecologically more sustainable whereas economically the valley districts were better. She concluded there is a trade-off between ecological and economical sustainability. Farm level sustainability revealed that the majority of the farms in the study area were moderately sustainable. She recommended afforestation, organic farming as measure to improve sustainability of the farms.
45.	Adaptation to climate Change: An economic study of cereal crops in Eastern Himalaya	Ms. Dayohimi Rymbai	2016	 The magnitude of annual rainfall is declining in Manipur and Sikkim and has been erratic in nature. Maximum temperature has increased significantly in case of Manipur and minimum temperature has increased significantly in Sikkim. The strategies adopted were limited, traditional and location specific which were adopted to specifically tackle the change in time of arrival in rainfall, whereas, no strategy was related with the change in temperature. The main adaptation strategies taken by the farmers are the change in transplanting time (Strategy 1) and the change in transplanting and harvesting time (Strategy 2). The cost of rice cultivation has increased by `8505.63/ha and `6374.29/ha for Strategy 1 and Strategy 2, respectively during drought period. The net benefits realized was `1329.30/ha and `1568.67/ha in case of Strategy 1 and Strategy 2, respectively.
46.	Crop diversification and its impact on farming households of Manipur: A micro level study	Ms. Monika Aheibam,	2017	 The category-wise analysis of crop diversification at household level shows that 65 per cent of the marginal farms had high level of crop diversification followed by medium (19.61%); low (13.73%) and only about 2 per cent of very high level of crop diversification. Overall, the category-wise analysis of level of crop diversification shows that in case of marginal farmers; about 54 per cent of the households had high level followed by low level (26.92%); medium level (17.95%) and very high level (1.28%). The study found that the socio-economic factors which influence households' decision to diversify crop was farm size whereas, tools and machineries, fertilizer, availability of HYV or improved seeds, irrigation facility, exposure to farming information, training and market distance from homestead area were the technological and institutional factors which influence households' decision to diversify crop by the households in Thoubal district.

47.	Economics of solar powered pumping system in major crops of Rajasthan: a comparative study"	Mr. Narendr Kumar Meena	2019	 The establishment cost was estimated to be highest on solar irrigation system (without subsidy) followed by electric, solar (with subsidy) and diesel system of irrigation due to high initial investment on installation of solar system without subsidy compare to other irrigation systems. Per hectare operational cost and cost of cultivation of kinnow farm with solar irrigation (with subsidy) was calculated to be least comparative to other irrigation systems. The kinnow cultivation under all the irrigation systems was proved to be cost-effective and feasible and viable economically in the study area.
48.	Vulnerability and Adaptation to Climate Change: A Study of Rice Farms in Manipur	Ms. Nivetina laitonjam	2019	 There was significant increasing trend in maximum and minimum temperature in the study area during 1975-2013. The 3-months, 6-months and 12-months SPI showed that there were occurrences of extreme climatic variability like extreme wet, very wet, moderate wet and extreme dry, very dry and moderate dry condition in the study area. Although a hill district, Churachandpur district was categorized under low vulnerability due to low exposure and sensitivity while, Imphal East district was categorized high vulnerability due to high exposure and sensitivity to climatic variability.
49.	Livelihood Security through Organic Farming in North East Hill Region of India: An Economic Analysis	Ms. Singyala chiphang	2020	 Organic farming is economically more profitable as it has cost saving benefits in several aspects and also increases the gross income of the farmers as organic produce fetches more prices in the markets. Majority of the respondents irrespective of the organic adopters (40.67%) and non-adopters (40%) were having moderate level of livelihood security. Organic adopters were found to be higher reflecting the direct impact of adoption of organic method for cultivation of different crops. For the non-adopters, household size, total farm income, land holding and access to market were the significant factors influencing their livelihood security.
50.	Food and Nutritional Security at Farm Household Level in Meghalaya: Impact of Government	Mr. Baiarbor Nongbri	2020	 There were mainly two main sources for food availability across households in the state of Meghalaya viz., own farm production and market sources. PDS system was the other main sources for rice availability. It was estimated that there was a gap or deficit in terms of food supply in the state. Thus, self sufficiency of

Schemes	food across the state was still a challenged whereby, epitomised that the state still depends on other states for food imports. Considering the food basket, there was a huge gap in the calorie intake across various food items and rice was still the main staple food contributing the
	maximum calorie intake.

PUBLISHED: June 2022

COMPILED & EDITED BY:

Dr. Y. Ranjana Devi Deputy Director of Instruction

> Dr. S. Basanta Singh Director of Instruction

CENTRAL AGRICULTURAL UNIVERSITY Lamphelpat, Imphal, Manipur-795004

> Website: www.cau.ac.in E.mail: di.office@yahoo.com